SimpleCAR: An Efficient Bug-Finding Tool Based On Approximate Reachability

Jianwen Li, **Rohit Dureja**, Geguang Pu, Kristin Y. Rozier, Moshe Y. Vardi

Frame Sequences

Forward Reachability Sequence

Basic: $F_0 = I$

Induction: $F_{i+1} = Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$ Safety

Check: $F_i \cap \neg P \neq \emptyset$ Unsafety

(bug-finding)

Maintaining exact frame sequences is hard!

Use approximate sequences

Complementary Approximate Reachability

Maintains two approximate sequences

Forward-CAR

Basic: $F_0 = I$

Induction: $F_{i+1} \supseteq Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$

Safety Checking

Backward Sequence (under-approximate)

Basic: $B_0 = \neg P$

Induction: $B_{j+1} \subseteq Reach^{-1}(B_j)$

Check: $B_j \cap I \neq \emptyset$

Unsafety Checking

Complementary Approximate Reachability

Maintains two approximate sequences

Backward-CAR

(under-approximate)

Basic: $F_0 = I$

Induction: $F_{i+1} \subseteq Reach(F_i)$

Check: $F_i \cap \neg P \neq \emptyset$

Unsafety Checking

Backward Sequence (over-approximate)

Basic: $B_0 = \neg P$

Induction: $B_{j+1} \supseteq Reach^{-1}(B_j)$

Terminate: $B_{j+1} \subseteq \bigcup_{0 \le k \le j} B_k$

Safety Checking

SimpleCAR

- Model checker based on Complementary Approximate Reachability
 - Forward and Backward (and heuristics)
- Input: hardware circuit models expressed as AIG
- Configurable heuristics, uses Glucose as the underlying SAT solver
- Baseline performance measure for future extensions to CAR.
- Performance comparable to other state-of-the-art model checkers

Open-source under GNU GPLv3 http://temporallogic.org/research/CAV18/

Performance

- Tools compared:
 - ABC x 3 algorithms
 - IIMC x 2
 - IC3Ref x 1

- Simplic3 x 4
- CARChecker x 2
- SimpleCAR x 4
- 6 tools, 16 algorithms, 748 SINGLE property benchmarks from HWMCC
- Identified a bug, and counterexample generation errors

Performance

- Particularly suited for unsafety checking aka bug-finding
 - complements BMC and IC3 algorithm portfolios

Summary and Future Work

- SimpleCAR is a **lightweight** and **extensible** implementation of CAR
- Performance **comparable** to state-of-the-art tools
 - Complements existing model checking algorithm portfolios
- Serves as the "bottom-line" performance measure for future extensions
- Backward-CAR is suited for unsafety checking!
- Future Work
 - Tradeoff between heuristics and performance gain
 - New heuristics, shorter SAT queries

Thank you!

http://temporallogic.org/research/CAV18/