
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

More Scalable LTL Model Checking via
Discovering Design-Space Dependencies (D3)

Rohit Dureja and Kristin Yvonne Rozier

Iowa State University
{dureja, kyrozier}@iastate.edu

Abstract. Modern system design often requires comparing several mod-
els over a large design space. Different models arise out of a need to
weigh different design choices, to check core capabilities of versions with
varying features, or to analyze a future version against previous ones.
Model checking can compare different models; however, applying model
checking off-the-shelf may not scale due to the large size of the design
space for today’s complex systems. We exploit relationships between dif-
ferent models of the same (or related) systems to optimize the model-
checking search. Our algorithm, D3, preprocesses the design space and
checks fewer model-checking instances, e.g., using nuXmv. It automat-
ically prunes the search space by reducing both the number of models
to check, and the number of LTL properties that need to be checked for
each model in order to provide the complete model-checking verdict for
every individual model-property pair. We formalize heuristics that im-
prove the performance of D3. We demonstrate the scalability of D3 by
extensive experimental evaluation, e.g., by checking 1,620 real-life mod-
els for NASA’s NextGen air traffic control system. Compared to checking
each model-property pair individually, D3 is up to 9.4× faster.

1 Introduction

In the early phases of design, there are frequently many different models of the
system under development [2, 23, 29] constituting a design space. We may need
to evaluate different design choices, to check core capabilities of system versions
with varying feature-levels, or to analyze a future version against previous ones
in the product line. The models may differ in their assumptions, implementa-
tions, and configurations. We can use model checking to aid system development
via a thorough comparison of the set of system models against a set of prop-
erties representing requirements. Model checking, in combination with related
techniques like fault-tree analysis, can provide an effective comparative analy-
sis [29, 23]. The classical approach checks each model one-by-one, as a set of
independent model-checking runs. For large and complex design spaces, perfor-
mance can be inefficient or even fail to scale to handle the combinatorial size of
the design space. Nevertheless, the classical approach remains the most widely
used method in industry [3, 23, 25, 29, 30]. Algorithms for family-based model

Thanks to NSF CAREER Award CNS-1552934 for supporting this work.

checking [13, 11] mitigate this problem but their efficiency and applicability still
depends on the use of custom model checkers to deal with model families.

We assume that each model in the design space can be parameterized over
a finite set of parametric inputs that enable/disable individual assumptions,
implementations, or behaviors. It might be the case that for any pair of models
the assumptions are dependent, their implementations contradict each other,
or they have the same behavior. Since the different models of the same system
are related, it is possible to exploit the known relationships between them, if
they exist, to optimize the model checking search. These relationships can exist
in two ways: relationships between the models, and relationships between the
properties checked for each model.

We present an algorithm that automatically prunes and dynamically orders
the model-checking search space by exploiting inter-model relationships. The al-
gorithm, Discover Design-Space Dependencies (D3), reduces both the number
of models to check, and the number of LTL properties that need to be checked
for each model. Rather than using a custom model checker, D3 works with any
off-the-shelf checker. This allows practitioners to use state-of-the-art, optimized
model-checking algorithms, and to choose their preferred model checker, which
enables adoption of our method by practitioners who already use model check-
ing with minimum change in their verification workflow. We reason about a set
of system models by introducing the notion of a Combinatorial Transition Sys-
tem (CTS). Each individual model, or instance, can be derived from the CTS
by configuring it with a set of parameters. Each transition in the CTS is en-
abled/disabled by the parameters. We model check each instance of the CTS
against sets of properties. We assume the properties are in Linear Temporal
Logic (LTL) and are independent of the choice of parameters, though not all
properties may apply to all instances. D3 preprocesses the CTS to find relation-
ships between parameters and minimizes the number of instances that need to be
checked to produce results for the whole set. It uses LTL satisfiability checking
[33] to determine the dependencies between pairs of LTL properties, then reduces
the number of properties that are checked for each instance. D3 returns results
for every model-property pair in the design space, aiming to compose these re-
sults from a reduced series of model-checking runs compared to the classical
approach of checking every model-property pair. We demonstrate the industrial
scalability of D3 using a set of 1,620 real-life, publicly-available SMV-language
benchmark models with LTL specifications; these model NASA’s NextGen air
traffic control system [8, 23, 29]. We also evaluate the property-dependence anal-
ysis separately on real-life models of Boeing AIR 6110 Wheel Braking System
[3] to evaluate D3 in multi-property verification workflows.

Related Work. One striking contrast between D3 and related work is that D3

is a preprocessing algorithm, does not require custom modeling, and works with
any off-the-shelf LTL model checker. Parameter synthesis [9] can generate the
many models in a design space that can be analyzed by D3; however existing
parameter synthesis techniques require custom modeling of a system. We take
the easier path of reasoning over an already-restricted set of models of inter-

est to system designers. D3 efficiently compares any set of models rather than
finding all models that meet the requirements. Several parameter synthesis ap-
proaches designed for parametric Markov models [15, 16, 24, 31] use PRISM and
compute the region of parameters for which the model satisfies a given proba-
bilistic property (PCTL or PLTL); D3 is an LTL-based algorithm. Parameter
synthesis of a parametric Markov model with non-probabilistic transitions can
generate the many models that D3 can analyze. In multi-objective model check-
ing [1, 21, 22, 28], given a Markov decision process and a set of LTL properties,
the algorithms find a controller strategy such that the Markov process satisfies
all properties with some set probability. Differently from multi-objective model
checking, which generates “trade-off” Pareto curves, D3 gives a boolean result.
The parameterized model checking problem (PCMP) [20] deals with infinite
families of homogeneous processes in a system; in our case, the models are finite
and heterogeneous. Specialized model-set checking algorithms [18] can check the
reduced set of D3 processed models.

In multi-property model checking, multiple properties are checked on the
same system. Existing approaches simplify the task by algorithm modifications
[4, 7], SAT-solver modifications [27, 26], and property grouping [6, 5]. The inter-
property dependence analysis of D3 can be used in multi-property checking. We
compare D3 against the affinity[6] based approach to property grouping.

Product line verification techniques, e.g., with Software Product Lines (SPL),
also verify parametric models describing large design spaces. We borrow the no-
tion of an instance, from SPL literature [32, 34]. An extension to NuSMV in
[13] performs symbolic model checking of feature-oriented CTL. The symbolic
analysis is extended to the explicit case and support for feature-oriented LTL in
[11, 12]. The work most closely related to ours is [17] where product line verifica-
tion is done without a family-based model checker. D3 outputs model-checking
results for every model-property pair in the design space (e.g. all parameter
configurations) without dependence on any feature whereas in SPL verification
using an off-the-shelf checker, if a property fails then it isn’t possible to know
which models do satisfy the property [14, 17].

Contributions. The preprocessing algorithm presented is an important step-
ping stone to smarter algorithms for checking large design spaces. Our contribu-
tions are summarized as follows:
1. A fully automated, general, and scalable algorithm for checking design spaces;

it can be applied to LTL model checking problems without major modifica-
tions to the system designers’ verification workflow.

2. Modification to the general model-checking procedure of sequentially check-
ing properties against a model to a dynamic procedure; the next property
to check is chosen to maximize the number of yet-to-be-checked properties
for which the result can be determined from inter-property dependencies.

3. Comparison of our novel inter-property dependence analysis to existing work
in multi-property verification workflows [6].

4. Extensive experimental analysis using real-life benchmarks; all reproducibil-
ity artifacts and source code are publicly available.

2 Preliminaries

Definition 1. A labeled transition system (LTS) is a system model of the form
M = (Σ,S, s0, L, δ) where,
1. Σ is a finite alphabet, or set of atomic propositions,
2. S is a finite set of states,
3. s0 ∈ S is an initial state,
4. L : S → 2Σ is a labeling function that maps each state to the set of atomic

propositions that hold in it, and
5. δ : S → S is the transition function.

A computation path, or run of LTSM is a sequence of states π = s0→s1→ . . .→sn
over the word w = L(s0), L(s1), . . . , L(sn) such that si ∈ S for 0 ≤ i ≤ n, and
(si, si+1) ∈ δ for 0 ≤ i < n. Given a LTL property ϕ and a LTS M , M models
ϕ, denoted M |= ϕ, iff ϕ holds in all possible computation paths of M .

Definition 2. A parameter Pi is a variable with the following properties.
1. The domain of Pi, denoted JPiK, is a finite set of possible assignments to Pi.
2. Parameter Pi is set by assigning a single value from JPiK, i.e. Pi = dPi

∈ JPiK.
A non-assigned parameter is considered unset.

3. Parameter setting is static, i.e., it does not change during a run of the system.

Let P be a finite set of parameters. |P | denotes the number of parameters.
For each Pi ∈ P , |Pi| denotes the size of the domain of Pi. Let Form(P) de-
note the set of all Boolean formulas over P generated using the BNF grammar
ϕ ::= > | Pi == D and D ::= Pi1 | Pi2 | . . . | Pin ; for each Pi ∈ P , n = |Pi|,
and JPiK={Pi1 , Pi2 , . . . , Pin}. Therefore, Form(P) contains > and equality con-
straints over parameters in P .

Definition 3. A combinatorial transition system (CTS) is a combinatorial sys-
tem model MP = (Σ,S, s0, L, δ, P, LP), such that (Σ,S, s0, L, δ) is a LTS and
1. P is a finite set of parameters to the system, and
2. LP : δ → Form(P) is function labeling transitions with a guard condition.

We limit the guard condition over a transition to > or an equality constraint
over a single parameter for simpler expressiveness and formalization. However,
there can be multiple transitions between any two states with different guards.
A transition is enabled if its guard condition evaluates to true, otherwise, it
is disabled. A label of > implies the transition is always enabled. A possible
run of a CTS is a sequence of states πP = s0

ν1→s1
ν2→ . . .

νn→sn over the word
w = L(s0), L(s1), . . . , L(sn) such that si ∈ S for 0 ≤ i ≤ n, νi ∈ Form(P) for
0 < i ≤ n, and (si, si+1) ∈ δ and (si, si+1, νi+1) ∈ LP for 0 ≤ i < n, i.e., there
is transition from si to si+1 with guard condition νi+1. A prefix α of a possible
run πP = α

νi→ . . .
νn→sn is also a possible run.

Example 1. A Boolean parameter has do-
main {true, false}. Fig. 1 shows a CTS with
Boolean parameters P = {P1, P2, P3}. For
brevity, guard condition Pi==true is written
as Pi, while Pi==false is written as ¬Pi. A
transition with label P1 is enabled if P1 is
set to true. Similarly, a label of ¬P3 implies
the transition is enabled if P3 is set to false.

P1
>

P1

¬P3
>
>

>
>

>

>

P2s0 s1

s2

s3

s4

s6

s5

Fig. 1: An example of a combina-
torial transition system MP with
parameters P = {P1, P2, P3}.

Definition 4. A parameter configuration c for a set of parameters P is a k-
tuple (dP1 , dP2 , . . . , dPk

), for k = |P |, that sets each parameter in P , i.e., for
every 1 ≤ i ≤ k, Pi = dPi

and dPi
∈ JPiK is a setting. The set of all possible

configurations C over P is equal to P1×P2× . . .×Pk where × denotes the cross
product. The setting for Pi in configuration c is denoted by c(Pi).

A configured run of a CTS MP over a configuration c, or c-run, is a sequence
of states πP (c) = s0

ν1−→ s1
ν2−→ . . .

νn−→ sn such that πP (c) is a possible run, and
c ` νi for 0 < i ≤ n, where ` denotes propositional logic satisfaction of the guard
condition νi under parameter configuration c. Given a CTSMP and a parameter
configuration c, a state t is reachable iff there exists a c-run such that sn = t,
denoted s0

∗−→
c
t, i.e., t can be reached in zero or more transitions. A transition

with guard ν is reachable iff (sj , sj+1, ν) ∈ LP , (sj , sj+1) ∈ δ, and s0
∗−→
c
sj .

Definition 5. An instance of a CTS MP = (Σ,S, s0, L, δ, P, LP) for parameter
configuration c is a LTS MP (c) = (Σ,S, s0, L, δ

′) where δ′ = {t ∈ δ | c ` LP (t)}.

Given a LTL property ϕ and a CTS MP = (Σ,S, s0, L, δ, P, LP), the model
checking problem for MP is to find all parameter configurations c ∈ C over P
such that ϕ holds in all c-runs of MP , or all computation paths of LTS MP (c).

Definition 6. Given a CTS MP with parameters Pi, Pj , and a parameter con-
figuration c, Pj is dependent on Pi, denoted Pj c Pi, iff

– In all possible runs with a transition guard over Pj , a transition with guard
over Pi appears before a transition with guard over Pj , and

– In all configured runs, the setting for Pi in c makes transitions with guard
conditions over Pj unreachable.

Example 2. In Fig. 1, if P1 is set to false, execution never reaches the transition
labeled ¬P3. Therefore, if configuration c = (false, true, true) then P3 c P1.

Definition 7. A universal model U is a LTS that generates all possible compu-
tations paths over its atomic propositions.

Theorem 1 (LTL Satisfiability). [33] Given a LTL property ϕ and a uni-
versal model U , ϕ is satisfiable if and only if U 6|= ¬ϕ.

This theorem reduces LTL satisfiability checking to LTL model checking. There-
fore, ϕ is satisfiable when the model checker finds a counterexample.1

Modeling a Combinatorial Transition System. Efficient modeling of a CTS re-
quires language constructs to deal with parameters. Since our goal is to use an
existing model checker, language extensions are outside the scope of this work.
An alternative way to add parameters to any system description is by utilizing
the C preprocessor (cpp). Given a set of parameters P , and a combinatorial
model MP , each run of the preprocessor with a configuration c ∈ C gener-
ates an instance MP (c). Fig. 2 demonstrates generating a CTS from two related
SMV models. Model 1 and Model 2 differ in the initial configuration of the
parameter. The corresponding CTS replaces the parameter initiation with the
PARAMETER_CONF preprocessor directive. The cpp is run on the CTS model with
#define PARAMETER_CONF 0, and #define PARAMETER_CONF 1 to generate the
two models.

Model 1 Model 2 CTS Model

Fig. 2: Model 1 and Model 2 written in the SMV language can be combined to form
a CTS model with the use of PARAMETER_CONF preprocessor directive.

3 Discovering Design-Space Dependencies

In this section we describe D3. Our approach speeds up model checking of com-
binatorial transitions systems by preprocessing of the input instances; it there-
fore increases efficiency of both BDD-based and SAT-based model checkers. The
problem reduction is along two dimensions: number of instances, and number of
properties.

3.1 Reduction Along the Number of Instances

Given a set of parameters P , a combinatorial transition system MP , and a
property ϕ, MP is model checked by sending, for all parameter configuration
1This is why we do not consider CTL; CTL satisfiability is EXPTIME-complete and
cannot be accomplished via linear time CTL model checking.

c ∈ C, instance MP (c) to the LTS model checker, along with the property ϕ.
The output is aggregated for |C| runs of the model checker, and all parameter
configurations c, such thatMP (c) |= ϕ are returned. In principle, parameters can
be encoded as state variables, and the parametric model can be posed as one
big model-checking obligation, however there are caveats.

1. State space explosion before any useful results are obtained.
2. Counterexample generated from one run of the model checker gives a single

undesirable configuration.

Our goal is to make the classical approach of individual-model checking more
scalable as the design space grows by intelligently integrating possible depen-
dencies between parameter configurations.

Lemma 1. Given a CTS MP = (Σ,S, s0, L, δ, P, LP) with parameters A,B ∈
P , if B c A for some parameter configuration c, then there does not exist any
possible run of MP with prefix α = s0

∗→si
νB−→sj

∗→sk
νA→sl, where νA and νB are

guards over A and B, resp., and si, sj , sk, sl ∈ S, i.e., a transition with guard
over B does not appear before a transition with guard over A.

As a corollary to Lemma 1, there also do not exist possible runs with transi-
tion guards only over B (and no other Pi ∈ P). Therefore, given a CTSMP with
states si, sj , sk, sl ∈ S and parameters A,B ∈ P , if B c A for some parameter
configuration c, then all possible runs of MP have one of the following prefixes:

1. s0
∗→si

νA−→sj
∗→sk

νB−→sl (guard over A before guard over B)
2. s0

∗→si
νA−→sj

∗→sk
νA−→sl (guards only over A)

3. s0
∗→si

∗−→sj
∗→sk

∗−→sl (guards neither over A nor B)

Similarly, if A c B for some parameter configuration c, then all possible
runs of MP have one of the following prefixes:

1. s0
∗→si

νB−→sj
∗→sk

νA−→sl (guard over B before guard over A)
2. s0

∗→si
νB−→sj

∗→sk
νB−→sl (guards only over B)

3. s0
∗→si

∗−→sj
∗→sk

∗−→sl (guards neither over A nor B)

Therefore, when A and B are not dependent, there is no possible run with
transition guards over both A and B. Note that for a CTS MP with A,B ∈ P ,
if A and B are dependent, then either A c B or B c A but not both for
any configuration c. We only show formalization for B c A; A c B follows
directly.

Theorem 2 (Redundant Instance). Given a CTSMP = (Σ,S, s0, L, δ, P, LP)
with parameters A,B ∈ P such that B c A for some configuration c, and a
LTL property ϕ, there exist configurations c1, c2, . . . ck ∈ C for k = |B| such that
– ci(A) = c(A) for 0 < i ≤ k, and
– ci(B) = dBi

∈ JBK for 0 < i ≤ k and JBK = {dB1 , dB2 , . . . , dBk
}

For such configurations MP (c1) |= ϕ ≡MP (c2) |= ϕ ≡ . . . ≡MP (ck) |= ϕ.

function FindUP (MP , ĉ)
Input: MP = CTS (Σ,S, so, L, δ, P, LP)

ĉ = partial configuration
Output: Pu = unset parameter queue
1: if all parameters are set in ĉ : return ∅
initially Pu is empty.

2: traverse MP # depth-first traversal
3: if t ∈ δ̂ is reachable and

LP (t) is undefined :
LP (t) is undefined when its parameter
is NOT set in partial configuration ĉ.

4: enqueue (p : LP (t) is guard over p) in Pu

5: return Pu

(a) FindUP algorithm to find unset parameters
in a partially configured CTS.

1: configuration set Ĉ # initially empty
function GenPC (MP , Pu, ĉ)
Input: MP = CTS (Σ,S, so, L, δ, P, LP)
Pu = unset parameter queue
ĉ = partial config # initially empty

2: while Pu not empty :
3: p = dequeue element from Pu

iterate on possible assignments to p
4: for each pd in JpK :
5: set parameter p to pd in ĉ
6: # get unset parameters
7: Pu = FindUP(MP , ĉ)
8: if Pu is empty : # all parameters set
9: add ĉ to Ĉ and return
10: else: # set unset parameters
11: GenPC(MP , Pu, ĉ)

(b) GenPC algorithm to generate parameter
configurations to be checked.

Fig. 3: Algorithms for reduction along the number of instances

Theorem 2 allows us to reduce the number of model checker runs by exploiting
redundancy between instances. The question that needs to be answered is how to
find dependent parameters? A partial parameter configuration, ĉ, is a parameter
configuration in which not all parameters have been set. Given a CTS MP =
(Σ,S, s0, L, δ, P, LP), for a transition t ∈ δ, such that LP (t) = ν, the guard ν is

– defined, if its corresponding parameter is set in ĉ, and
– undefined, otherwise.

A defined guard evaluates to true when ĉ ` LP (t), or false when ĉ 6` LP (t). Algo-
rithm FindUP (Find Unset Parameters) in Fig. 3(a) solves the dual problem
of finding independent parameters. It takes as input a CTS MP and a partial
parameter configuration ĉ, and returns unset parameters for which guard condi-
tions are undefined and their corresponding transitions are reachable. It traverses
(depth-first) the CTS starting from a node for the initial state s0. During traver-
sal, an edge (transition) t = (si, sj) connects two nodes (states) si, sj ∈ S if t ∈ δ
and ĉ ` LP (t). The edge is disconnected if t 6∈ δ or ĉ 6` LP (t). SinceMP is defined
relationally in the annotated SMV language with preprocessor directives (§ 2),
in the worst case, FindUP takes polynomial time in the number of symbolic
states and transitions. From an implementation point of view, FindUP invokes
the cpp for parameter settings in ĉ on the input model, and parses the output
for unset parameters.

Lemma 2. FindUP returns unset parameters Pi ∈ P for all reachable transi-
tions t ∈ δ such that guard LP (t) is a guard over Pi, and is undefined.

Algorithm GenPC (Generate Parameter Configurations) in Fig. 3(b) uses
FindUP as a subroutine to recursively find parameter configurations that need
to be checked. It takes as input a CTS MP , queue of unset parameters Pu,
and a partial parameter configuration ĉ. Initially, ĉ contains no set parameters
and Pu =FindUP(MP , ĉ). Upon termination of GenPC, Ĉ contains the set of

partial parameter configurations that need to be checked. On every iteration,
GenPC picks a parameter p from Pu, assigns it a value from its domain JpK in
ĉ, and uses FindUP to find unset parameters in CTS MP . If the returned unset
parameter queue is empty, ĉ added to Ĉ. Otherwise, GenPC is called again with
the new unset parameter queue.

Theorem 3 (GenPC is sound). Given a CTSMP with parameters A,B ∈ P ,
if there exists a partial configuration ĉ ∈ Ĉ with ĉ(A) = dAn

∈ JAK and B unset,
then there exist configurations c1, c2, . . . ck ∈ C for k = |B| such that
– ci(A) = ĉ(A) for 0 < i ≤ k, and
– ci(B) = dBi

∈ JBK for 0 < i ≤ k and JBK = {dB1 , dB2 , . . . , dBk
}

for which B ci
A.

Theorem 4 (GenPC is complete). Given a CTSMP with parameters A,B ∈
P , if there exist configurations c1, c2, . . . ck ∈ C for k = |B| such that
– ci(A) = dAn

for 0 < i ≤ k and dAn
∈ JAK, and

– ci(B) = dBi
∈ JBK for 0 < i ≤ k and JBK = {dB1 , dB2 , . . . , dBk

}
for which B ci

A, then there exists a partial configuration ĉ ∈ Ĉ with ĉ(A) =
dAn

and B unset.

GenPC returns partial configurations ĉ ∈ Ĉ over parameters. A partial con-
figuration ĉ is converted to a parameter configuration c by setting the unset
parameters in ĉ to an arbitrary value from their domain. Note that this opera-
tion is safe since the arbitrarily set parameters are not reachable in the instance
MP (c). As a result of this operation, Ĉ contains configurations c that have all
parameters set to a value from their domain.

Theorem 5 (Minimality). The minimal set of parameter configurations is Ĉ.

3.2 Reduction Along the Number of Properties

In model checking, properties describe the intended behavior of the system.
Usually, properties are iteratively refined to express the designer’s intentions. For
small systems, it can be manually determined if two properties are dependent
on one another. However, practically determining property dependence for large
and complex systems requires automation. Given a set of properties P, and LTS
M , an off-the-shelf model checker is called N = |P| times.

In order to check all properties in P, a straightforward possibility is to gen-
erate a grouped property ϕg given by the conjunction of all properties ϕi ∈ P,
i.e., ϕg =

∧
i ϕi. However, the straightforward approach may not scale [6] due to

1. State-space explosion due to orthogonal cone-of-influences of properties.
2. Need for additional analysis of individual properties one-by-one in order to

discriminate failed ones and generate individual counterexamples.
3. Computational cost of verifying grouped properties in one run can be signif-

icantly higher than verifying individual properties in a series of runs.

Our goal is to minimize the number of properties checked by intelligently using
dependencies between LTL properties. For two LTL properties ϕ1 and ϕ2 depen-
dence can be characterized in four ways: (ϕ1 → ϕ2), (ϕ1 → ¬ϕ2), (¬ϕ1 → ϕ2),
and (¬ϕ1 → ¬ϕ2). Theorem 6 allows us to find dependencies automatically.

Theorem 6 (Property Dependence). For two LTL properties ϕ1 and ϕ2
dependence can be established by model checking with universal model U .

The dependencies learned as a result of Theorem 6 have implications on the
verification workflow. For instance, if ϕ1 → ϕ2 is valid, then for a model M ,
if M |= ϕ1 then M |= ϕ2. Of particular interest are (ϕ1 → ϕ2), (¬ϕ1 → ϕ2),
and (¬ϕ1 → ¬ϕ2) because they allow use of previous counterexamples (for
(ϕ1 → ¬ϕ2), even if ϕ1 is true, there is no counterexample to prove that ϕ2 is
false).

(a) Initial layout of the property table. (b) Results that can be determined based on
knowing ϕ1 does not hold in model M .

Fig. 4: Property table to store dependence between every LTL property pair in set
P. Each row entry in the table is a (key, value) pair. Multiple entries with the same
key have been merged in a single row. E.g., if ϕ1 → ϕ2, the table contains a row
(ϕ1 : T, ϕ2 : T) implying that if ϕ1 holds for model M then ϕ2 also holds.

The pairwise property dependencies are stored in a property table as shown
in Fig. 4(a). Each row in the table is a (key, value) pair. For LTL properties
ϕ1, ϕ2, and ϕ3 in P, if (ϕ1 → ϕ2) is valid, then the table contains a row
(ϕ1 : T, ϕ2 : T) implying that if ϕ1 holds for a model M then ϕ2 also holds.
Similarly, for (¬ϕ3 → ¬ϕ2) the table entry (ϕ3 : F,ϕ2 : F) implies that if ϕ3
doesn’t hold forM then ϕ2 doesn’t hold. Algorithm CheckRP (Check Reduced
Properties) in Fig. 5 takes as input a LTS M , a set of LTL properties P, and
a property table T over P. CheckRP selects an unchecked LTL property ϕ,
checks whether ϕ holds in M , and stores the outcome. Based on the outcome, it
uses the property table to determine checking results for all dependent properties
and stores them. For example, in Fig. 4(b), if M 6|= ϕ1, then M 6|= ϕ3, M 6|= ϕ2,
and M |= ϕ6. The LTL property to check is selected using two heuristics.

1: array results # initially empty
function CheckRP (M , P, T)
Input: M = LTS (Σ,S, s0, L, δ)

P = set of LTL properties
D = property table

2: while unchecked properties remain :
3: ϕ = get unchecked property
4: outcome = ModelCheck(M , ϕ)

outcome = T if M |= ϕ, else F
5: set S = {(ϕ : outcome)}
6: while S is not empty :
7: (p : result) = pop element from S
8: results[p] = result # update result
9: S = S ∪ unchecked properties

dependent on (p : result) in D
10: return

Fig. 5: CheckRP algorithm to check
LTL properties against a model.

function D3 (MP , P)
Input: MP = CTS (Σ,S, s0, L, δ, P, LP)

P = set of LTL properties
1: configuration set Ĉ # initially empty
2: parameter queue Pu = FindUP(MP , _)
3: Ĉ = GenPC(MP , Pu, _) # See § 3.1

generate property table, see § 3.2
4: property table D # initially empty
5: for every property pair (ϕ1, ϕ2) in P :
6: check if ϕ1 and ϕ2 are dependent
7: add entry to D

check configured instances
8: for each c in Ĉ :
9: generate instance MP (c) # See § 2
10: array results # initially empty
11: CheckRP(MP (c), P, D) # See § 3.2
12: return results

Fig. 6: Discovering Design-Space Depen-
dencies (D3) algorithm.

H1: Maximum Dependence. The tabular layout of property dependencies is used
to calculate the number of dependencies for each property. The unchecked LTL
property with the most right-hand side entries is selected. If U ⊆ P are unchecked
properties in table D, the next LTL property to check is then

ϕ ∈ U : count(ϕ) = max({count(ψ) | ∀ψ ∈ U})

where count(x) = |D[x : T] ∪D[x : F]| returns the number of dependencies for
a LTL property in table D, and max(S) returns the largest element from S.

H2: Property Grouping. Most model-checking techniques are computationally
sensitive to the cone-of-influence (COI) size. Grouping properties based on over-
lap between their COI can speed up checking. Property affinity [6, 5] based on
Jaccard Index can compare the similarity between COI. For two LTL properties
ϕi and ϕj , let Vi and Vj , respectively, denote the variables in their COI with
respect to a model M . The affinity αij for ϕi and ϕj is given by

αij = |Vi ∩ Vj |
|Vi|+ |Vj | − |Vi ∩ Vj |

If αij is larger than a given threshold, then properties ϕi and ϕj are grouped
together. The model M is then checked against ϕi∧ϕj . If verification fails, then
ϕi and ϕj are checked individually against model M .

4 Experimental Analysis

Our revised model checking procedure D3 is shown in Fig. 6. D3 takes as input
a CTS MP and a set of LTL properties P. It uses GenPC to find the parameter

configurations that need to be checked. It then generates a property table to store
dependencies between LTL properties. Lastly, CheckRP checks each instance
against properties in P. Results are collated for every model-property pair.

4.1 Benchmarks

We evaluated D3 on two benchmarks derived from real-world case studies.

1) Air Traffic Controller (ATC) Models: are a set of 1,620 real-world models rep-
resenting different possible designs for NASA’s NextGen air traffic control (ATC)
system. In previous work, this set of models were generated from a contract-
based, parameterized nuXmv model; individual-model checking enabled their
comparative analysis with respect to a set of requirements for the system [23].
In the formulation of [23], the checking problem for each model is split in to five
phases.2. In each phase, all 1,620 models are checked. For our analysis and to
gain better understanding of the experimental results, we categories the phases
based on the property verification results (unsat if property holds for the model,
and sat if it does not). Each of the 1,620 models can be seen as instances of a
CTS with seven parameters. Each of the 1620 instances is checked against a total
of 191 LTL properties. The original nuXmv code additionally uses OCRA [10]
for compositional modeling, though we do not rely on its features when using
the generated model-set.
2) Boeing Wheel Braking System (WBS) Models: are a set of seven real-world
nuXmv models representing possible designs for the Boeing AIR 6110 wheel
braking system [3]. Each model in the set is checked against∼200 LTL properties.
However, the seven models are not generated from a CTS. We evaluate D3

against this benchmark to evaluate performance on multi-property verification
workflows, and compare with existing work on property grouping [6].

4.2 Experiment Setup

D3 is implemented as a preprocessing script in ∼2,000 lines of Python code. We
model check using nuXmv 1.1.1 with the IC3-based back-end. All experiments
were performed on Iowa State University’s Condo Cluster comprising of nodes
having two 2.6Ghz 8-core Intel E5-2640 processors, 128 GB memory, and running
Enterprise Linux 7.3. Each model checking run has dedicated access to a node,
which guarantees that no resource conflict with other jobs will occur.

4.3 Experimental Results

1) Air Traffic Controller (ATC) Models. All possible models are generated by
running the C preprocessor (cpp) on the annotated composite SMV model rep-
resenting the CTS. Table 1 summarizes the results for complete verification of
the ATC design space: 191 LTL properties for each of 1,620 models.
2For a detailed explanation we refer the reader to [23]

Table 1: Timing results of 1,620 models for each phase using individual-model check-
ing, and D3. For individual-model checking, Time indicates model checking time,
whereas, for D3, Time indicates preprocessing time + model checking time.

Phase Property
Mix

Properties Model Checking Time (in hours) Speedup Overall
SpeedupTotal (median) Individual D3

I unsat 25 (24) 6.02 4.02 1.5×
4.5×II unsat 29 (19) 12.76 5.17 2.5×

III unsat 29 (1) 139.79 14.80 9.4×

IV sat+unsat 54 (43) 24.81 14.25 1.7× 1.8×V sat+unsat 54 (44) 31.15 16.03 1.9×

TOTAL 191 214.53 54.27 4.0× -

Compared to individual model checking, wherein every model-property pair
is checked one-by-one, verification of the ATC design space using D3 is 4.0×
faster. It reduces the the 1,620 models in the design space to 1,028 models. D3

takes roughly three hours to find dependencies between LTL properties for all
phases. Dependencies established are local to each model-checking phase and are
computed only once per phase. The number of reduced LTL properties checked
for each model in a phase vary; we use CheckRP with the Maximum Depen-
dence heuristic (H1). Although the logical dependencies are global for each phase,
the property verification results vary for different models. In phases containing
unsat properties, speedup achieved by D3 varies between 1.5× to 9.4×; since
all properties are true for the model, only (ϕ1 : T → ϕ2 : T) dependencies in the
property table are used. A median of one property is checked per model in phase
III. For phases IV and V, D3’s performance is consistent as shown in Fig. 7.

Interesting Observation. D3 requires a minimum number of models to be faster
than individual-model checking. When the design space is small, individually
checking the models is faster than verifying using D3. This is due to the fact
that D3 requires an initial set-up time. The number of models after which D3 is
faster is called the “crossover point”. For the benchmark, the crossover happens
after ∼120 models. As the number of models, and the relationships between
them increase, the time speedup due to D3 also increases.

Overall. From the initial problem of checking 1,620 models against 191 LTL
properties, D3 checks 1,028 models with a median of 129 properties per model
(45% reduction of design space). Once D3 terminates, the model-checking results
for each model are compared using the data analysis technique of [23].

2) Boeing Wheel Braking System (WBS) Models. LTL Properties for each of the
seven models are checked using four algorithms:
i. Single : properties are checked one-by-one against the model,
ii. CheckRP : properties are checked using inter-property dependencies,
iii. CheckRP + Maximum Dependence (H1) : unchecked property with the

maximum dependent properties as per inter-property dependencies is checked,

1 400 800 1200 1620
Count of configured instances (models)

0.00

7.00

14.25

21.00

24.81

M
od

el
ch

ec
ki

ng
tim

e
(i

n
ho

ur
s)

individual

GENPC
CHECKRP + H1
D3 + H1

(a) Phase IV

1 400 800 1200 1620
Count of configured instances (models)

0.00

10.00

20.00

31.15

16.03

M
od

el
ch

ec
ki

ng
tim

e
(i

n
ho

ur
s)

individual

GENPC
CHECKRP + H1
D3 + H1

(b) Phase V

Fig. 7: Cumulative time for checking each model for all properties one-by-one (indi-
vidual), checking reduced instances for all properties (GenPC), checking all models
for reduced properties (CheckRP + H1), and checking reduced instances for reduced
properties (D3 + H1). D3 outperforms individual-model checking in all phases.

iv. CheckRP + Property Affinity (H2) : properties are pairwise grouped and
the unchecked pair with the maximum dependent properties is checked.
Fig. 8 summarizes the results. On every call to the model checker, a sin-

gle or grouped LTL property is checked. CheckRP is successful in reducing
the number of checker runs by using inter-property dependencies. The Maximal
Dependences (H1) and Property Grouping (H2) heuristics improve the perfor-
mance of CheckRP, the former more than the latter. The timing results for
each algorithm is shown in Table 2.

Analysis. For H2, we limited our experiments to pairwise groupings, however,
larger groupings may be possible (trade-off required between property inter-
dependencies and groupings). It took ∼50 minutes to establish dependence be-
tween properties for a model, which is much higher than checking them one-by-
one without using CheckRP. This brings us back to the question of estimating
a crossover point. However, as the number of models increase for the same set
of properties, CheckRP will start reaping benefits. Nevertheless, CheckRP is
suited for multi-property verification in large design spaces.

5 Conclusions and Future Work
We present an algorithm,D3, to increase the efficiency of LTL model checking for
large design spaces. It is successful in reducing the number of models that need to
be verified, and also the properties verified for each model. In contrast to software
product line model checking techniques using an off-the-shelf checker, D3 returns
the model-checking results for all models, and for all properties.D3 is general and
extensible; it can be combined with optimized checking algorithms implemented
in off-the-shelf model checkers. We demonstrate the practical scalability of D3

1 2 3 4 5 6 7
Model number

10

100

N
um

be
ro

fc
he

ck
er

ru
ns

(l
og

)
179

236 234 227 227 248 248

23 23 20
25

16
21 21

10 11 11 11 11 11 1111 13 14 12 12 14 15

single CHECKRP CHECKRP + H1 CHECKRP + H2

Fig. 8: Number of calls made to the model checker to verify all properties in the set for a
model. Every call to the checker verifies one property: single or grouped. For CheckRP,
multiple property results are determined (based on inter-property dependencies) on
every checker run. Heuristics H1 and H2 improve performance of CheckRP.

Table 2: Timing results (in seconds) for performance of D3’s inter-property depen-
dence analysis. A property: single or grouped, is verified on each checker run. Overall
time indicates the total time to verify all properties for a model.

Model
Single CheckRP CheckRP+H1 CheckRP+H2

Overall
Time

Checker
Runs

Overall
Time

Checker
Runs

Overall
Time

Checker
Runs

Overall
Time

Checker
Runs

1 17.81 179 2.92 23 1.28 10 2.05 11
2 64.37 236 9.35 23 3.94 11 5.67 13
3 54.22 234 7.11 20 3.40 11 4.97 14
4 53.18 227 9.71 25 3.41 11 5.89 12
5 61.02 227 6.86 16 4.01 11 5.58 12
6 68.24 248 8.34 21 3.93 11 5.34 14
7 58.40 248 7.74 21 3.39 11 5.98 15

on a real-life benchmark models. We calculate a crossover point as a crucial
measure of when D3 can be used to speed up checking. D3 is fully automated
and requires no special input-language modifications; it can easily be introduced
in a verification work-flow with minimal effort. Heuristics for predicting the
cross-over point for other model sets are a promising topic for future work. We
plan to examine extending D3 to other logics besides LTL, and its applicability
to other types of transition systems, like families of Markov processes. We also
plan to investigate further reduction in the search space by extending D3 to
re-use intermediate model checking results across several models. In a nutshell,
D3 is a front-end preprocessing algorithm, and future work involves tying in an
improved model checking back-end and utilizing available information to reduce
the overall amortized performance. Finally, since checking families of models is
becoming commonplace, we plan to develop more industrial-sized SMV model
sets and make them publicly available as research benchmarks.

6 Supporting Artifact

The artifact for reproducibility of our experiments [19] is publicly available under
the MIT License, and supports all reported results of Section 4. It includes

1. Benchmarks: NASA’s NextGen Air Traffic Control System [23] and Boeing’s
Wheel Braking System [3] (Section 4.1).

2. Scripts: Python scripts to run D3 on the two benchmarks (Figure 6).
3. Datasets: Ready-to-use datasets generated during our analysis (Section 4.3)

The artifact supports the following usage scenarios.

1. Verify the benchmarks using both individual-model checking and model
checking with D3, or run the complete experimental analysis to reproduce
the results reported in Tables 1 and 2.

2. Study and evaluate the benchmarks and source code for D3, sub-algorithms
(GenPC and CheckRP), and heuristics (H1 and H2).

3. Introduce extensions to D3 and experiment with new heuristics.

Please refer to the README files in the artifact for further information. Every
README inside a directory details the directory structure, usage of contained
files with respect to the evaluation, and step-by-step instructions on how to the
use the contained scripts to regenerate the experimental analysis.

Data Availability Statement. The benchmarks evaluated, source code, and data-
sets generated during our experimental analysis are available in the Springer/
Figshare repository: https://doi.org/10.6084/m9.figshare.5913013. The-
orem proofs and extended results are available on the paper’s accompanying
website: http://temporallogic.org/research/TACAS18/.

References
1. Baier, C., Dubslaff, C., Klüppelholz, S., Daum, M., Klein, J., Märcker, S., Wunder-

lich, S.: Probabilistic model checking and non-standard multi-objective reasoning.
In: FASE (2014)

2. Bauer, C., Lagadec, K., Bès, C., Mongeau, M.: Flight control system architecture
optimization for fly-by-wire airliners. J. Guidance, Control, & Dynamics 30(4)
(2007)

3. Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri, T.,
Robinson, R., Tonetta, S.: Formal design and safety analysis of AIR6110 wheel
brake system. In: CAV (2015)

4. Cabodi, G., Camurati, P., Garcia, L., Murciano, M., Nocco, S., Quer, S.: Speeding
up model checking by exploiting explicit and hidden verification constraints. In:
DATE (2009)

5. Cabodi, G., Camurati, P.E., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer,
S.: To split or to group: from divide-and-conquer to sub-task sharing for verifying
multiple properties in model checking. STTT (2017)

6. Cabodi, G., Nocco, S.: Optimized model checking of multiple properties. In: DATE
(2011)

7. Cabodi, G., Garcia, L.A., Murciano, M., Nocco, S., Quer, S.: Partitioning
interpolant-based verification for effective unbounded model checking. TCAD 29(3)
(2010)

8. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: CAV
(2014)

9. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
FMCAD (2013)

10. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the refinement
of temporal contracts. In: ASE (2013)

11. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. JSTTT 14(5) (2012)

12. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: Foundations for verifying variability-intensive systems
and their application to LTL model checking. TSE 39(8) (2013)

13. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking of
software product lines. In: ICSE (2011)

14. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: efficient verification of temporal properties in software product
lines. In: ICSE (2010)

15. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.P., Ábrahám, E.: PROPhESY: A probabilistic parameter synthesis tool. In: CAV
(2015)

16. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.P., Ábrahám, E.: Parameter synthesis for probabilistic systems. MBMV (2016)

17. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., Wąsowski, A.: Family-based model
checking without a family-based model checker. In: Model Checking Software

18. Dureja, R., Rozier, K.Y.: FuseIC3: An algorithm for checking large design spaces.
In: FMCAD (2017)

19. Dureja, R., Rozier, K.Y.: More Scalable LTL Model Checking via Discovering
Design-Space Dependencies (Artifact). https://doi.org/10.6084/m9.figshare.
5913013 (2018)

20. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
CADE (2000)

21. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of markov decision processes. In: TACAS (2007)

22. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: TACAS (2011)

23. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking at
scale: Automated air traffic control design space exploration. In: CAV (2016)

24. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric markov decision
processes. In: NFM (2011)

25. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
On modelling and verifying railway interlockings: Tracking train lengths. Science
of Computer Programming 96(3) (2014)

26. Khasidashvili, Z., Nadel, A.: Implicative simultaneous satisfiability and applica-
tions. In: HVC (2012)

27. Khasidashvili, Z., Nadel, A., Palti, A., Hanna, Z.: Simultaneous sat-based model
checking of safety properties. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC (2006)

28. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Compositional probabilistic
verification through multi-objective model checking. Inf. Comput. 232 (2013)

29. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Rozier, K.Y.: Comparing different
functional allocations in automated air traffic control design. In: FMCAD (2015)

30. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and model checking abstractions of complex railway models using CSP||B. In: HVC
(2013)

31. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.P.: Parameter syn-
thesis for markov models: Faster than ever. In: ATVA (2016)

32. Rosenmüller, M., Siegmund, N.: Automating the configuration of multi software
product lines. VaMoS 10 (2010)

33. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: SPIN (2007)
34. Schirmeier, H., Spinczyk, O.: Challenges in software product line composition. In:

HICSS. IEEE (2009)

