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between agents? resolution algorithm to use?
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loss of separation?



Design Space

Airspace Allocation

How much information is shared Wthh collision detection &
between agents? resolution algorlthm to use?
Who is in-charge of separation Which agent resolves a potential
assurance, aircraft, ATC, or both? loss of separation?

Lots of Design Choices!
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Design-Space Exploration

Airspace Allocation

/\\

There is no loss of separation Aircraft can detect and avoid a
between aircraft potential loss of separation

Aircraft are able to communicate Ground controller can
with each other communicate with aircraft

Find design choices that satisty requirements
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Design-Space Exploration

What is a design space?

Set of possible design choices for a system.

What is a design-space exploration?

Design-time analysis to evaluate design choices exhaustively.



Design-Space Exploration

Complex systems are modeled as design spaces.
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Alternative comparison via design space exploration

Model Checking!
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Model Checking Design Spaces

For every

Model Set Model-Requirement pair

M={My,...,M,}

Requirements Set
P={e1,... om}

Model Checker

Design-space model checking entails
multi-model/requirement checking

Our Goal
Make model-checking for design-spaces more scalable
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Design-space Reduction'

* Generate design-space models from a meta-model

« Combinatorial transitions systems (CTS), behavior enabled by parameters

« D3 algorithm to reduce number of model-property pairs

1. Finding redundant models, or models with exact same behavior (GenPC)
2. Reducing number of requirements by finding logical dependencies (CheckRP)

NASA ATC Models
Boolean parameters P, P, /3 13979

Py

120.002 —®— individual
1 —#— GENPC
1 —A&— CHECKRP + H1
20.007 ¢ prym

Model checking time (in hours)

T 60.00
Boeing WBS Models 30-00";
B single CHECKRP [ CHECKRP + H1 E= CHECKRP + H2 1480 B B ey i A A

234 227 227 0007 T T T
1 400 800 1200 1620
Count of configured instances (models)

Number of checker runs (log)

Upto 9.0X speedup

1R. Dureja and K. Y. Rozier. “More Scalable LTL Model Checking via Discovering Design-Space Dependencies” (TACAS 2017)
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Incremental Verification??

 The ditferent design-space models have overlapping state spaces

* Generated from the same meta-model, overlapping behavior

 FuselC3 algorithm algorithm reuses reachable state approximations

1. IC3 frames are stored and “repaired” across multiple model-checking runs 2
2. Very fast verification when model-delta is small, regressions runs >

Set of related models { My, Ma, M3, M,} NASA ATC Models
Safety property ¢

IH Typical IC3 ®-® Incremental IC3 ®—© FuselC3
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Y ( ]
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k % 5 10 15 20 25 30 34
Property ID
1. Check My witho — M| = @
= Upto 5.48X speedup

2. Check M; with ¢ — ]\42 \75 ©

2R. Dureja and K. Y. Rozier. “FuselC3: An Algorithm for Checking Large Design Spaces” (FMCAD 2017)
3R. Dureja and K. Y. Rozier. “Incremental Design-Space Model Checking via Reusable Reachable State Approximations.” (under submission)
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Improved Orchestration®

* Partially-order models/requirements to maximize reuse

¢ Requirement grouping based on COI (structural and semantic)

* Improved localization abstraction

* Semantically similar requirements are localized concurrently

(a) Mix

Structural

Semantic

'Pl
|P2

(b) Low

(c) High

'Pl
|P2

50
v 103
6 ]
o))
a
.a ]
: ]
2 0.1:
O ;
= 0.01°
A

X

001 0.1 1
Multiple (hrs)

10 50

Upto 72X speedup

4R. Dureja, J. Baumgartner, A. Ivrii, R. Kanzelman, and K. Y. Rozier. “Boosting Verification Scalability via Structural Grouping and Semantic Partitioning of Properties” (FMCAD 2019)
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Model Checking Algorithms

Model Set

M:{Ml,...

Requirements Set

P:{wl,..

.

, M}
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Model Checker
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For every
Model-Requirement pair
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Model Checking Algorithms®”

* Improve SAT-based model checking algorithms

« Complementary approximate reachability (CAR) as proof-of-concept °

* Heuristics to improve bug-finding performance of CAR

 SimpleCAR can find bugs not found by IC3/BMC ¢; slow convergence
* Better SAT-query to improve performance of SimpleCAR 7

+ Also applicable to IC3; more scalable design-space checking

solved [0 uniquely solved
k¥
S 1501 T [OII]9 B
£ T
g / T IO 8 4
3 B
2 1001
< A a)
@ — 147 < 0 not solved by any
= 131 — 1364 & ;
-] — 120 other algorithm
L‘é 50- category
8
g
=
Z. oL L

BMC  IMC IC3/PDR CAR
Algorithm Category

5].Li, S. Zhu, Y. Zhang, G. Pu, and M. Y. Vardi. “Safety model checking with complementary approximations” ICCAD (2017)
¢]. Li, R. Dureja, G. Pu, K. Y. Rozier, M. Y. Vardi. “SimpleCAR: An Efficient Bug-Finding Tool Based on Approximate Reachability” (CAV 2018)
7R. Dureja, J. Li, G. Pu, M. Y. Vardi, K. Y. Rozier. “Intersection and Rotation of Assumption Literals Boosts Bug-Finding” (VSTTE 2019)
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Standard Reachability Analysis

Model M = (V,I1,T)
Safety Property P

M £ P

M is unsafe with respect to P
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Motivation

Complementary Approximate Reachability

Standard Reachability Analysis

Basic: ko =
Induction: Fi+1(=)Reach(F;)
Terminate: Fit1 € Up<j<; Fj«—— Safety

Check: F; N =P # ()« Unsafety
(bug-finding)

Maintaining exact frame sequences is hard; more states in memory
CAR uses approximate sequences
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Maintains two approximate sequences

Forward-CAR

Forward Sequence Backward Sequence
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Backward-CAR
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Complementary Approximate Reachability

Maintains two approximate sequences

Backward-CAR

Forward Sequence Backward Sequence
(under-approximate) (over-approximate)

Basic: Fo=1 Basic: By =P

Induction: Fi+1 € Reach(F;) Induction: Bj+1 2 Reach™'(B;)

Check: Fin=P#1 Terminate: Bj+1 € Up<r<; B



Complementary Approximate Reachability

Maintains two approximate sequences

Backward-CAR

Forward Sequence Backward Sequence
(under-approximate) (over-approximate)
Basic: Fo=1 Basic: By =P
Induction: Fi+1 C Reach(F;) Induction: Bj+1 2 Reach™'(B;)
Check: F;N=P#10 Terminate: Bj+1 € Up<r<; B
\ / \ }
| |

Unsafety Checking Safety Checking



Unsat Cores and CAR

» Unsat cores play a critical role in the performance of CAR

* Iteratively blocking overapproximate states (B-sequence), much like IC3

A

* Our quest for smallest unsat cores

¢ CARChecker (ICCAD 2017) uses minimal unsat cores — slow!
« SimpleCAR (CAV 2018) uses first unsat core— fast, but slow convergence

* Tradeoff — smaller v/s faster

* Find smaller (not minimal) unsat cores fast

* We propose heuristics that find smaller cores; negligible overhead
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Assumption literals are stored in a vector (e.g., MiniSAT)

Let A = {ag,a1,a2,as3,a4,as,. ..

Solver propagates each literal one-by-one; left 2 right
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Assumptions and SAT Solver

SAT(QO, A) — SAT(QO A A) (0 = Boolean formula in CNF

A = Set of assumption literals

Query UNSAT - Core C' € A and ¢ A C is UNSAT
C is not necessarily minimal
Assumption literals are stored in a vector (e.g., MiniSAT)

Let A = {ag,a1,a2,as3,a4,as,. ..

Solver propagates each literal one-by-one; left 2 right
Front literals have higher chance to be in unsat core C

>
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Proposed Heuristics

 Carefully reorder the assumption literals
* Drives SAT solvers to return smaller unsat cores

e Intuition
* Use old unsat cores to drive search for new unsat cores

Blocking Step
For some state s, if SAT(T' A B;, s) is UNSAT, add ¢ C s to Bj;1

Let —¢o be the last-added clause to B,;; < ¢co AT A Bj is UNSAT

(some state s)

C
0 drop literals “1

BEECER - W B0 On

¢1 AT A B; is UNSAT

c1is weaker than ¢y, and blocks more states at B;



e
Heuristic I - Intersection

* Default: Let s be a state to be blocked at Bj+1 (s picked from F-sequence)
Check SAT(T A By, s)

* Heuristic: Reorder literals in s to generate 3

Let —¢ be the last clause added to B;,,

- I
Check SAT(T A Bj, s)
- (note 5 =9
-
chs §s—¢c
 If UNSAT, higher chance of literals included in unsat core

* Weaker clause; more states thah®-c blocked at Bj.



e
Heuristic II - Rotation

CAR picks state from the F-sequence; checks intersection with bad states

 Ideally, want states to explore disjoint parts of the state space

Default: Let s be a state to be blocked at B]-+1 (s picked from F-sequence)
Check SAT(T A Bj, s)

If SAT, the assignment is a state ; can be reached from s. State ¢ is added to F-sequence

A set of states S is diverse if ();cgt = 0; disjoint states

Heuristic: Reorder literals in s to generate

* Every B, (j > 0) is associated with v; to store assumptions from last B, ; query

S

Check SAT(T A Bj, 3)

Uj+1
! (note § = s)

(VAN

Vit1 1S S—v;41MS

* Generate diverse states whenever query is SAT (proof in the paper)
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Experimental Evaluation

* Extended SimpleCAR to include proposed heuristics

e Intersection, Rotation, Combination, or None
* Order of state enumeration; pick s from F-sequence

Tools and algorithm categories compared:

= ABC (pdr, 3 x bmc) = Simplic3 (bmc, 3 x ic3, Avy)
= [IMC (bmc, 1ic3, Quip, ic3r) = SimpleCAR (8 x car)

= JC3Ref (ic3)

5 tools, 22 algorithms, 748 SINGLE property benchmarks from HWMCC

1 hour timeout

Identified a bug, and counterexample generation errors

We focus on unsafety checking

Open-source under GNU GPLv3
http://temporallogic.org/research/VvSTTE19/



High-level Performance

Number of Unsafe Benchmarks
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High-level Performance

Algorithm Categories

/4 solved

ﬁ ‘
S 15017 | N 9
solved [0 wuniquely solved
¢
é 1501 T IO 9 B
5 [T 9
2 ITIT]
e
» 100 / /
2% J 7
— /]

Z 147 A
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2
£
> /
Z oLL _

BMC  IMC I&3/'PDRW
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_ / .
% not solved by
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=)
o0
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155 \I

(CAV 2018)

_ /

algorithm
%) Cqp Uy

25% more solves
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High-level Performance

Virtual-best CAR
/4 solved NXXY category-uniquely solved
» 1501 (cav 2018) /0
—— _ T _
é‘ 7 1 2 0
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3 7 %
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"ty ey ) 2 /
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76) be bbz' b@J. b 2 befb ey - be -

simpcar-bbir gives 20%
smaller unsat cores

On-average 30% faster

Faster convergence!
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Summary and Discussion

Design-space exploration via model checking; many models/requirements

Focus along four verticals

* Design-space reduction * Improved orchestration
* Incremental verification *  Model checking algorithms

Applicable to equivalence checking, product lines, regression runs, etc.
+ Extensions to existing algorithms, and new specialized algorithms

Better handling of SAT queries improves model checking performance
* Proposed two heuristics: Intersection and Rotation

Heuristics can also be applied for clause generalization in IC3

Future work and research questions
* SAT-solver internal heuristics for literal scoring
« Adapting CAR to handle multiple properties; clause sharing between properties
« Improved synergy between model checking algorithms and SAT solvers

Thank You!

http://temporallogic.org/research/VvSTTE19/



