Intersection and Rotation of Assumption Literals Boosts Bug-Finding

Rohit Dureja*, Jianwen Li*, Geguang Pu*, Moshe Y. Vardi+, Kristin Y. Rozier*

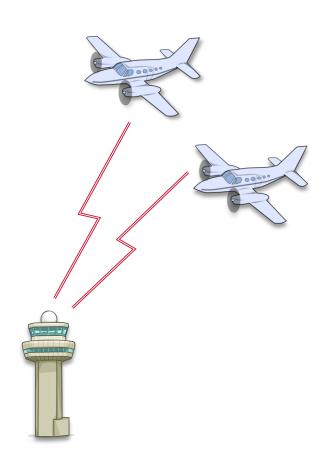
*Iowa State University, Ames, USA *East China Normal University, Shanghai, China †Rice University, Houston, USA

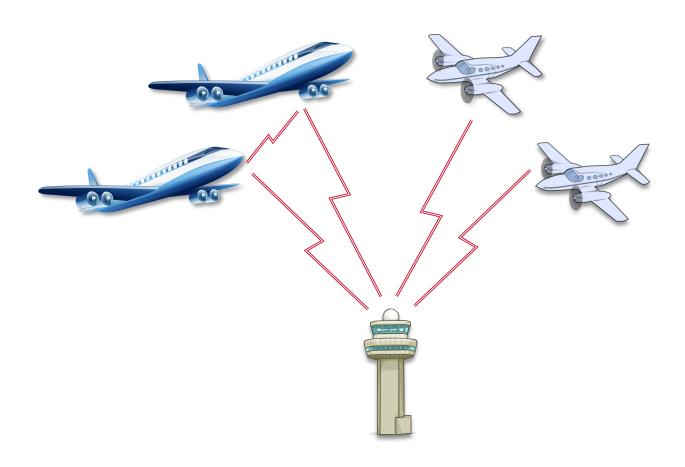
Verified Software: Theories, Tools, and Experiments (VSTTE)

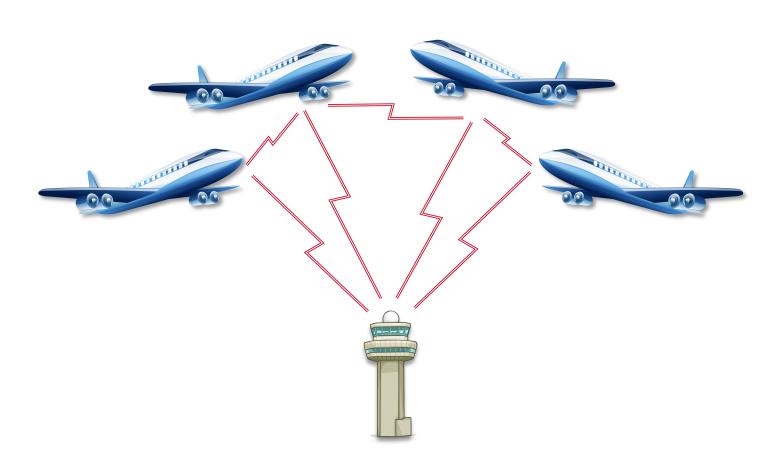
New York, NY

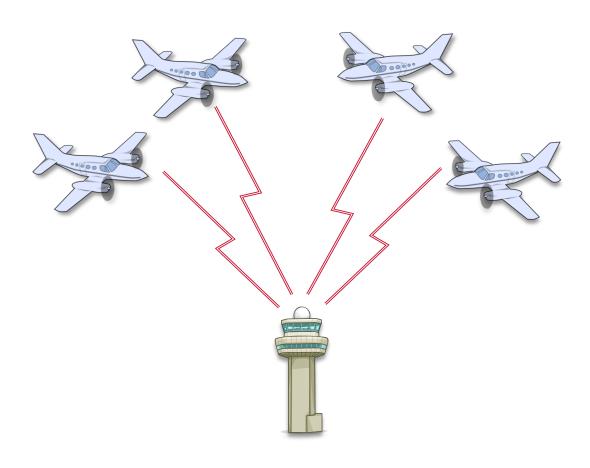
July 16, 2018

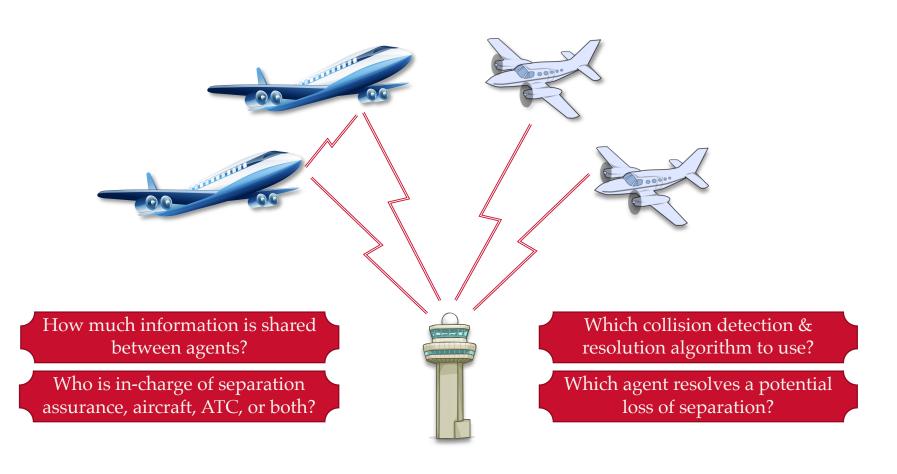
What is a design-space?



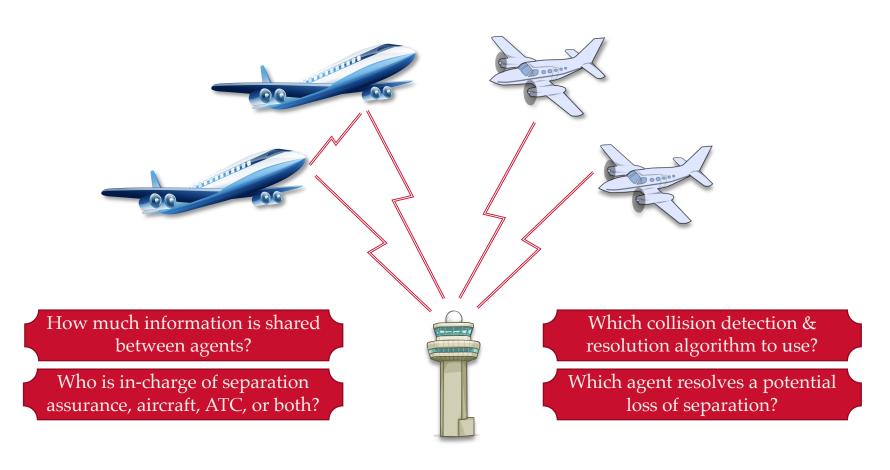








Airspace Allocation



Lots of Design Choices!

What is a design-space?

What is a design-space?

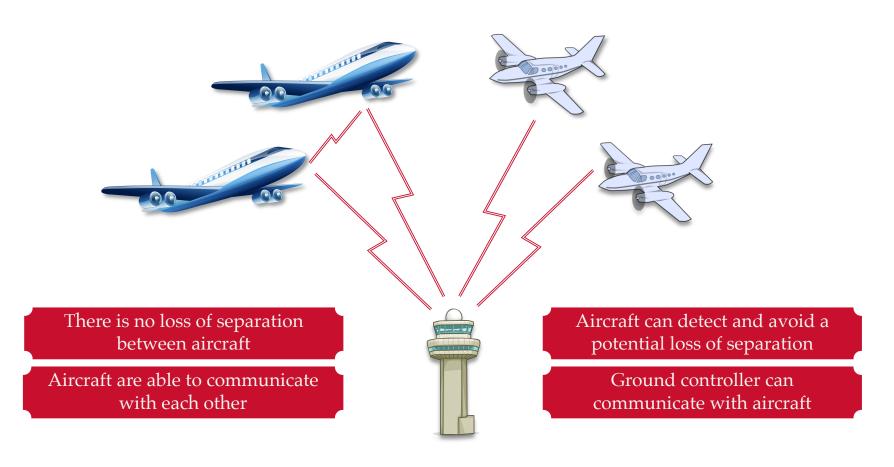
Set of possible design choices for a system.

What is a design-space?

Set of possible design choices for a system.

What is a design-space exploration?

Airspace Allocation



Find design choices that satisfy requirements

What is a design space?

Set of possible design choices for a system.

What is a design-space exploration?

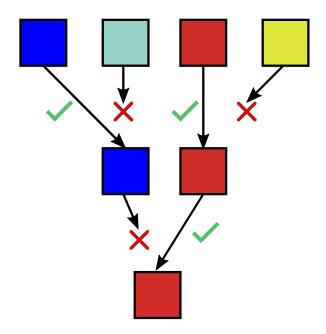
What is a design space?

Set of possible design choices for a system.

What is a design-space exploration?

Design-time analysis to evaluate design choices exhaustively.

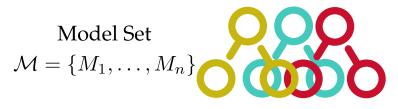
Complex systems are modeled as design spaces.



Alternative comparison via design space exploration

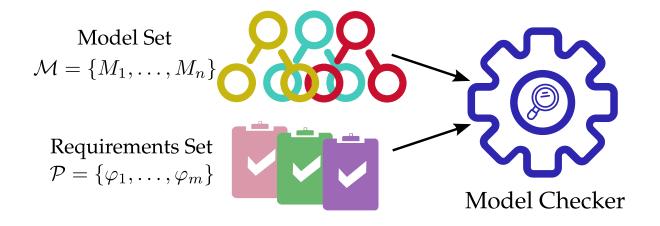
Model Checking!

Model Checking Design Spaces

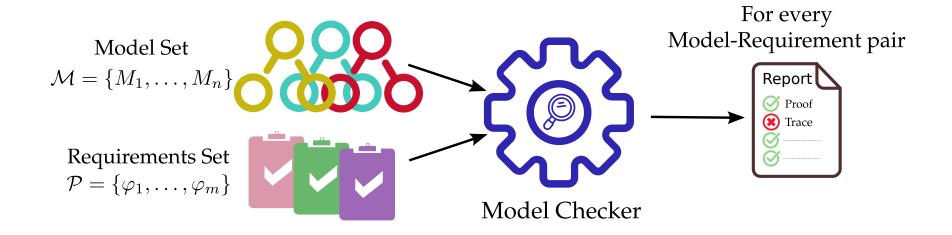


Requirements Set
$$\mathcal{P} = \{\varphi_1, \dots, \varphi_m\}$$

Model Checking Design Spaces



Model Checking Design Spaces



Design-space model checking entails multi-model/requirement checking

Our Goal

Make model-checking for design-spaces more scalable

Design-space reduction

Incremental Verification

Improved Orchestration

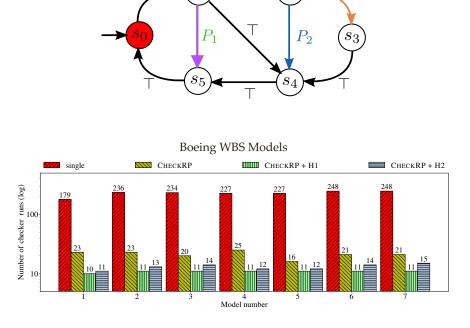
Design-space reduction

Incremental Verification

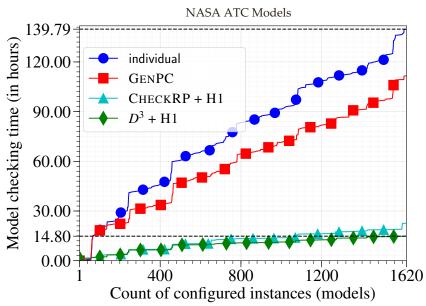
Improved Orchestration

Design-space Reduction¹

- Generate design-space models from a meta-model
 - Combinatorial transitions systems (CTS), behavior enabled by parameters
- D³ algorithm to reduce number of model-property pairs
 - 1. Finding redundant models, or models with exact same behavior (GenPC)
 - 2. Reducing number of requirements by finding logical dependencies (CheckRP)



Boolean parameters P_1 , P_2 , P_3



Upto 9.0x speedup

Design-space reduction

Incremental Verification

Improved Orchestration

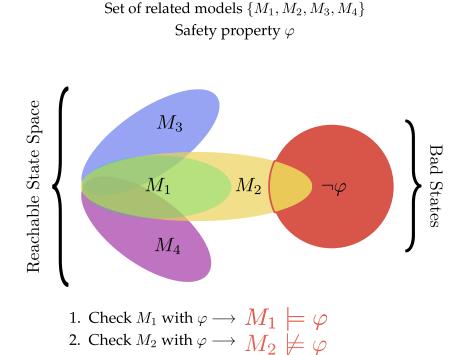
Design-space reduction

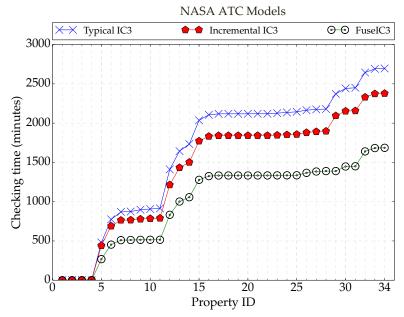
Incremental Verification

Improved Orchestration

Incremental Verification^{2,3}

- The different design-space models have overlapping state spaces
 - Generated from the same meta-model, overlapping behavior
- FuseIC3 algorithm algorithm reuses reachable state approximations
 - 1. IC3 frames are stored and "repaired" across multiple model-checking runs ²
 - 2. Very fast verification when model-delta is small, regressions runs ³





Upto 5.48x speedup

² R. Dureja and K. Y. Rozier. "FuseIC3: An Algorithm for Checking Large Design Spaces" (FMCAD 2017)

³ R. Dureja and K. Y. Rozier. "Incremental Design-Space Model Checking via Reusable Reachable State Approximations." (under submission)

Design-space reduction

Incremental Verification

Improved Orchestration

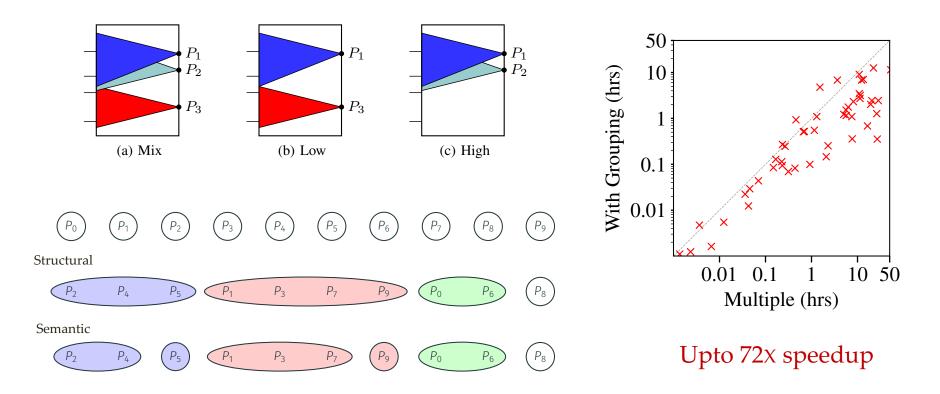
Design-space reduction

Incremental Verification

Improved Orchestration

Improved Orchestration⁴

- Partially-order models/requirements to maximize reuse
 - Requirement grouping based on COI (structural and semantic)
- Improved localization abstraction
 - Semantically similar requirements are localized concurrently



Design-space reduction

Incremental Verification

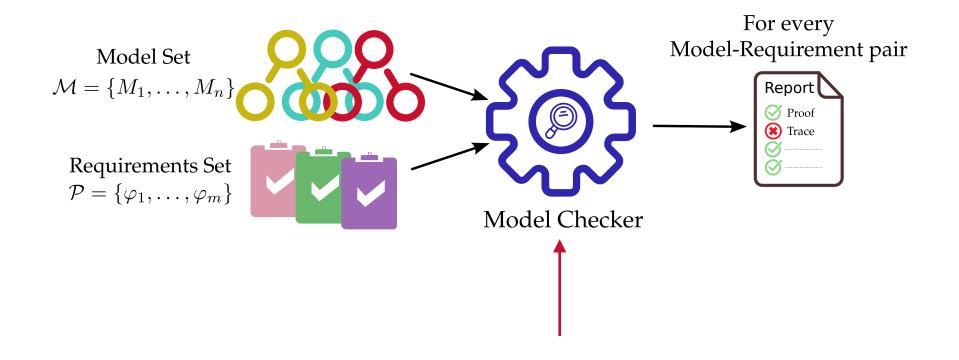
Improved Orchestration

Design-space reduction

Incremental Verification

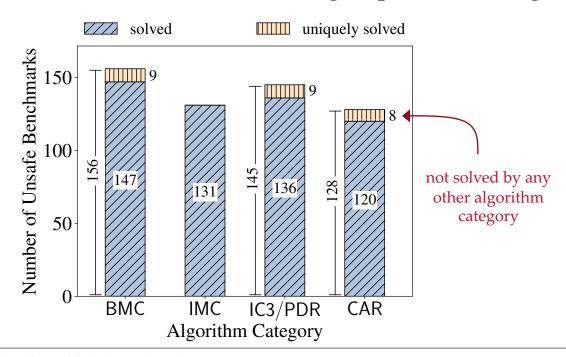
Improved Orchestration

Model Checking Algorithms



Model Checking Algorithms^{6,7}

- Improve SAT-based model checking algorithms
 - Complementary approximate reachability (CAR) as proof-of-concept ⁵
- Heuristics to improve bug-finding performance of CAR
 - SimpleCAR can find bugs not found by IC3/BMC ⁶; slow convergence
 - Better SAT-query to improve performance of SimpleCAR ⁷
- Also applicable to IC3; more scalable design-space checking



⁵ J. Li, S. Zhu, Y. Zhang, G. Pu, and M. Y. Vardi. "Safety model checking with complementary approximations" ICCAD (2017)

⁶ J. Li, R. Dureja, G. Pu, K. Y. Rozier, M. Y. Vardi. "SimpleCAR: An Efficient Bug-Finding Tool Based on Approximate Reachability" (CAV 2018)

⁷ R. Dureja, J. Li, G. Pu, M. Y. Vardi, K. Y. Rozier. "Intersection and Rotation of Assumption Literals Boosts Bug-Finding" (VSTTE 2019)

Standard Reachability Analysis

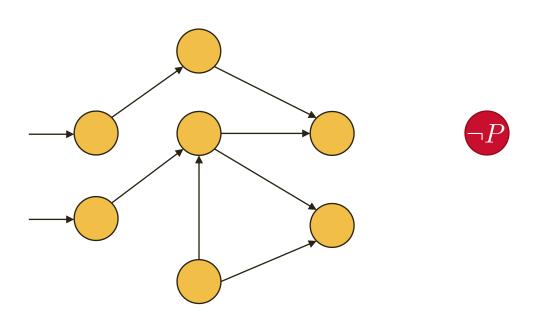
Standard Reachability Analysis

Model M = (V, I, T)Safety Property P

Standard Reachability Analysis

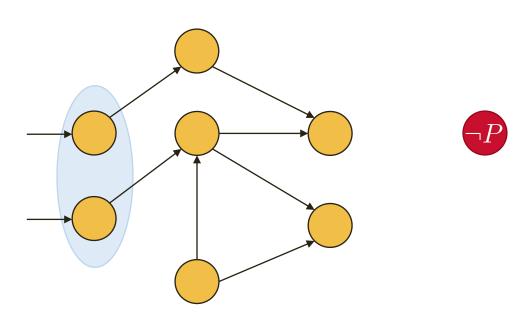
Model
$$M = (V, I, T)$$

Safety Property P



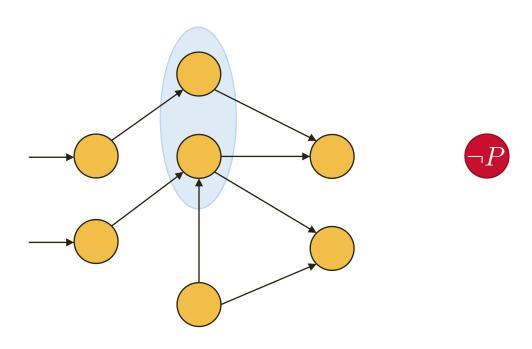
Model
$$M = (V, I, T)$$

Safety Property P



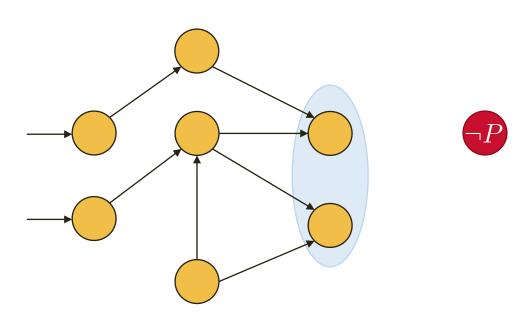
Model
$$M = (V, I, T)$$

Safety Property P



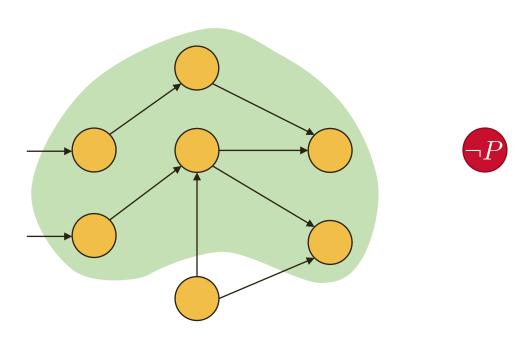
Model
$$M = (V, I, T)$$

Safety Property P



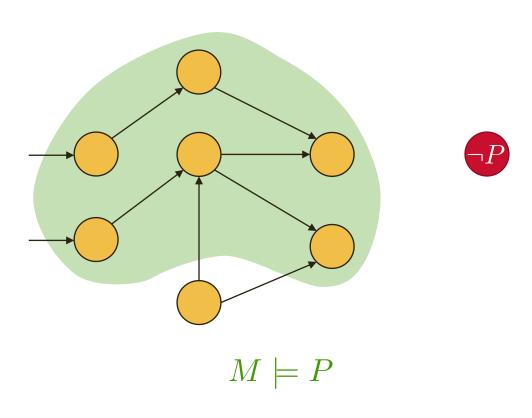
Model
$$M = (V, I, T)$$

Safety Property P



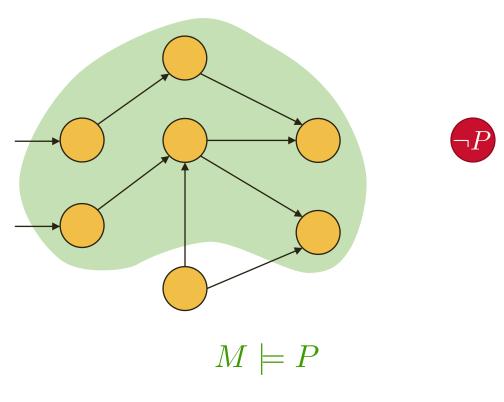
Model
$$M = (V, I, T)$$

Safety Property P



Model
$$M = (V, I, T)$$

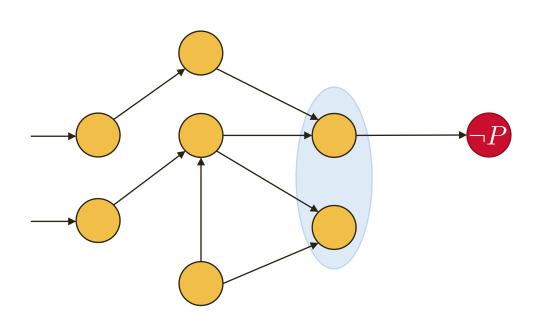
Safety Property P



M is **safe** with respect to P

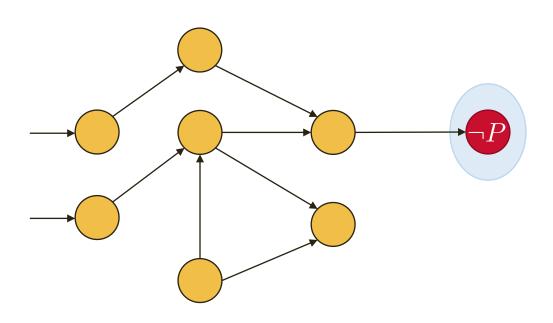
Model
$$M = (V, I, T)$$

Safety Property P



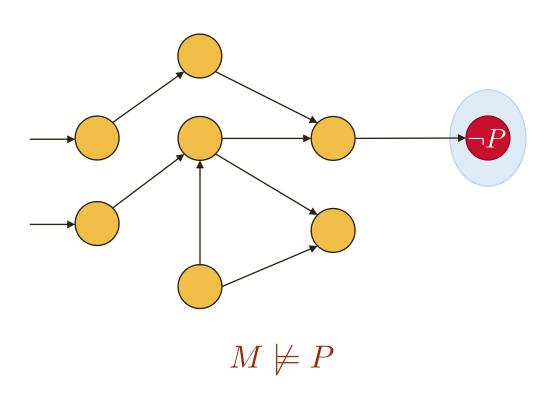
Model
$$M = (V, I, T)$$

Safety Property P



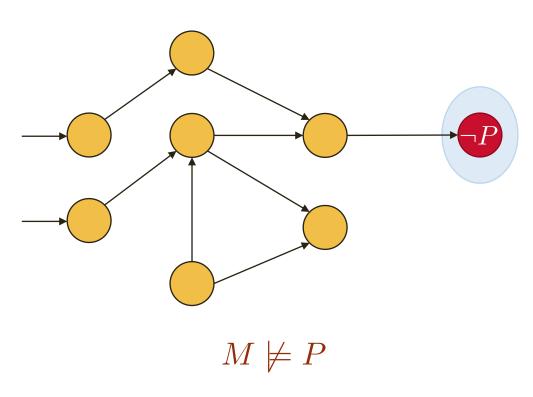
Model
$$M = (V, I, T)$$

Safety Property P



Model
$$M = (V, I, T)$$

Safety Property P

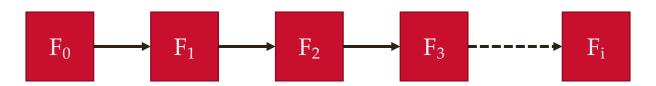


M is **unsafe** with respect to P

Standard Reachability Analysis

Basic: $F_0 = I$

Standard Reachability Analysis



Basic: $F_0 = I$

Induction: $F_{i+1} = Reach(F_i)$

Standard Reachability Analysis

Basic: $F_0 = I$

Induction: $F_{i+1} = Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le i \le i} F_j$

Standard Reachability Analysis

Basic: $F_0 = I$

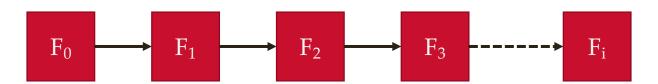
Induction: $F_{i+1} = Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le i \le i} F_j$

Check: $F_i \cap \neg P \neq \emptyset$

Complementary Approximate Reachability

Standard Reachability Analysis



Basic: $F_0 = I$

Induction: $F_{i+1} = Reach(F_i)$

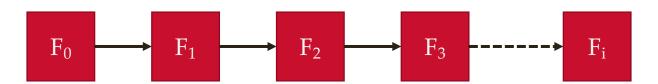
Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$ Safety

Check: $F_i \cap \neg P \neq \emptyset$ Unsafety

(bug-finding)

Complementary Approximate Reachability

Standard Reachability Analysis



Basic: $F_0 = I$

Induction: $F_{i+1} = Reach(F_i)$

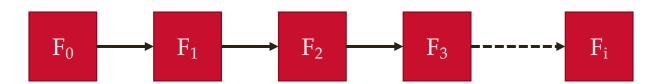
Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$ Safety

Check: $F_i \cap \neg P \neq \emptyset$ Unsafety

(bug-finding)

Complementary Approximate Reachability

Standard Reachability Analysis



Basic: $F_0 = I$

Induction: $F_{i+1} = Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$ Safety

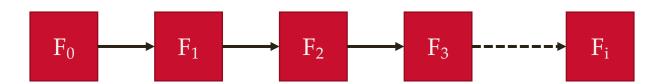
Check: $F_i \cap \neg P \neq \emptyset$ Unsafety

(bug-finding)

Maintaining exact frame sequences is hard; more states in memory

Complementary Approximate Reachability

Standard Reachability Analysis



Basic: $F_0 = I$

Induction: $F_{i+1} = Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$ Safety

Check: $F_i \cap \neg P \neq \emptyset$ Unsafety

(bug-finding)

Maintaining exact frame sequences is hard; more states in memory

CAR uses approximate sequences

Maintains two approximate sequences

Maintains two approximate sequences

Forward Sequence

Maintains two approximate sequences

Forward Sequence

(over-approximate)

Basic: $F_0 = I$

Induction: $F_{i+1} \supseteq Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$

Maintains two approximate sequences

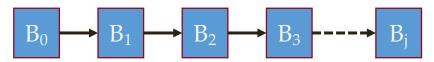
Basic: $F_0 = I$

Induction: $F_{i+1} \supseteq Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$

Backward Sequence

(under-approximate)



Basic: $B_0 = \neg P$ Inverse transition

Induction: $B_{j+1} \subseteq Reach^{-1}(B_j)$

Check: $B_j \cap I \neq \emptyset$

Maintains two approximate sequences

Basic: $F_0 = I$

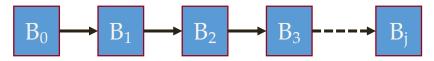
Induction: $F_{i+1} \supseteq Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$

Safety Checking

Backward Sequence

(under-approximate)



Basic: $B_0 = \neg P$ transition

Inverse

Induction: $B_{j+1} \subseteq Reach^{-1}(B_j)$

Check: $B_j \cap I \neq \emptyset$

Unsafety Checking

Maintains two approximate sequences

Forward-CAR

Basic: $F_0 = I$

Induction: $F_{i+1} \supseteq Reach(F_i)$

Terminate: $F_{i+1} \subseteq \bigcup_{0 \le j \le i} F_j$

Safety Checking

Backward Sequence

(under-approximate)

Basic: $B_0 = \neg P$ transition

Induction: $B_{j+1} \subseteq Reach^{-1}(B_j)$

Inverse

Check: $B_j \cap I \neq \emptyset$

Unsafety Checking

Maintains two approximate sequences

Backward-CAR

Forward Sequence

Backward Sequence

Maintains two approximate sequences

Backward-CAR

Forward Sequence

(under-approximate)

Backward Sequence

Basic: $F_0 = I$

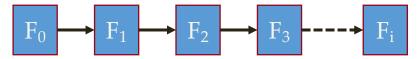
Induction: $F_{i+1} \subseteq Reach(F_i)$

Check: $F_i \cap \neg P \neq \emptyset$

Maintains two approximate sequences

Backward-CAR

(under-approximate)



Basic: $F_0 = I$

Induction: $F_{i+1} \subseteq Reach(F_i)$

Check: $F_i \cap \neg P \neq \emptyset$

Backward Sequence

(over-approximate)

$$B_0 \longrightarrow B_1 \longrightarrow B_2 \longrightarrow B_3 \longrightarrow B_j$$

Basic: $B_0 = \neg P$

Induction: $B_{j+1} \supseteq Reach^{-1}(B_j)$

Terminate: $B_{j+1} \subseteq \bigcup_{0 \le k \le j} B_k$

Maintains two approximate sequences

Backward-CAR

(under-approximate)

Basic: $F_0 = I$

Induction: $F_{i+1} \subseteq Reach(F_i)$

Check: $F_i \cap \neg P \neq \emptyset$

Unsafety Checking

Backward Sequence

(over-approximate)

Basic: $B_0 = \neg P$

Induction: $B_{j+1} \supseteq Reach^{-1}(B_j)$

Terminate: $B_{j+1} \subseteq \bigcup_{0 \le k \le j} B_k$

Safety Checking

Unsat Cores and CAR

- Unsat cores play a critical role in the performance of CAR
 - Iteratively blocking overapproximate states (B-sequence), much like IC3

- Our quest for smallest unsat cores
 - CARChecker (ICCAD 2017) uses minimal unsat cores slow!
 - SimpleCAR (CAV 2018) uses first unsat core–fast, but slow convergence
- Tradeoff smaller v/s faster
 - Find smaller (not minimal) unsat cores fast
- We propose heuristics that find smaller cores; negligible overhead

$$\mathrm{SAT}(\varphi,A) \equiv \mathrm{SAT}(\varphi \wedge A)$$
 $\varphi = \mathrm{Boolean\ formula\ in\ CNF}$ $A = \mathrm{Set\ of\ assumption\ literals}$

- Query UNSAT \rightarrow Core $C \subseteq A$ and $\varphi \land C$ is UNSAT
- C is not necessarily minimal
- Assumption literals are stored in a vector (e.g., MiniSAT)

Let
$$A = \{a_0, a_1, a_2, a_3, a_4, a_5, \dots, a_n\}$$

• Solver propagates each literal one-by-one; left → right

$$\mathrm{SAT}(\varphi,A) \equiv \mathrm{SAT}(\varphi \wedge A)$$
 $\varphi = \mathrm{Boolean\ formula\ in\ CNF}$ $A = \mathrm{Set\ of\ assumption\ literals}$

- Query UNSAT \rightarrow Core $C \subseteq A$ and $\varphi \land C$ is UNSAT
- C is not necessarily minimal
- Assumption literals are stored in a vector (e.g., MiniSAT)

Let
$$A = \{a_0, a_1, a_2, a_3, a_4, a_5, \dots, a_n\}$$

• Solver propagates each literal one-by-one; left → right

$$\mathrm{SAT}(\varphi,A) \equiv \mathrm{SAT}(\varphi \wedge A)$$
 $\varphi = \mathrm{Boolean\ formula\ in\ CNF}$ $A = \mathrm{Set\ of\ assumption\ literals}$

- Query UNSAT \rightarrow Core $C \subseteq A$ and $\varphi \land C$ is UNSAT
- C is not necessarily minimal
- Assumption literals are stored in a vector (e.g., MiniSAT)

Let
$$A = \{a_0, a_1, a_2, a_3, a_4, a_5, \dots, a_n\}$$

• Solver propagates each literal one-by-one; left → right

$$SAT(\varphi, A) \equiv SAT(\varphi \wedge A)$$

$$\varphi =$$
 Boolean formula in CNF

$$A =$$
Set of assumption literals

- Query UNSAT \rightarrow Core $C \subseteq A$ and $\varphi \land C$ is UNSAT
- C is not necessarily minimal
- Assumption literals are stored in a vector (e.g., MiniSAT)

Let
$$A = \{a_0, a_1, a_2, a_3, a_4, a_5, \dots, a_n\}$$

- Solver propagates each literal one-by-one; left → right
- Front literals have higher chance to be in unsat core C

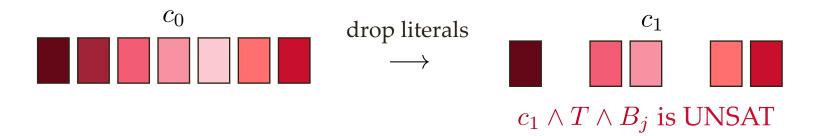
Proposed Heuristics

- Carefully reorder the assumption literals
 - Drives SAT solvers to return smaller unsat cores
- Intuition
 - Use **old** unsat cores to drive search for **new** unsat cores

Blocking Step

For some state s, if $SAT(T \land B_j, s)$ is UNSAT, add $c \subseteq s$ to B_{j+1}

Let $\neg c_0$ be the last-added clause to $B_{j+1} \leftarrow c_0 \land T \land B_j$ is UNSAT (some state s)



 c_1 is weaker than c_0 , and blocks more states at B_{j+1}

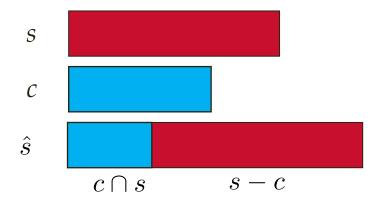
Heuristic I - Intersection

• **Default:** Let s be a state to be blocked at B_{j+1} (s picked from F-sequence)

Check
$$SAT(T \wedge B_j, s)$$

• **Heuristic:** Reorder literals in s to generate \hat{s}

Let $\neg c$ be the last clause added to B_{j+1}



Check
$$SAT(T \wedge B_j, \hat{s})$$

(note $\hat{s} = s$)

- If UNSAT, higher chance of literals included in unsat core
- Weaker clause; more states than $s \neg c$ blocked at B_{j+1}

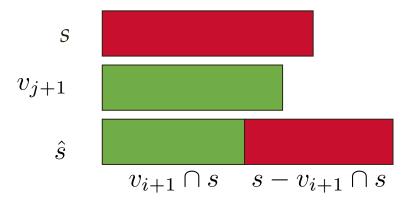
Heuristic II - Rotation

- CAR picks state from the F-sequence; checks intersection with bad states
 - Ideally, want states to explore disjoint parts of the state space
- **Default:** Let s be a state to be blocked at B_{j+1} (s picked from F-sequence)

Check
$$SAT(T \wedge B_j, s)$$

If SAT, the assignment is a state *t*; can be reached from *s*. State *t* is added to F-sequence

- A set of states *S* is *diverse* if $\bigcap_{t \in S} t = \emptyset$; disjoint states
- **Heuristic:** Reorder literals in s to generate
 - Every B_i (i > 0) is associated with v_i to store assumptions from last B_{i-1} query



Check
$$SAT(T \wedge B_j, \hat{s})$$

(note $\hat{s} = s$)

Generate diverse states whenever query is SAT (proof in the paper)

Experimental Evaluation

- Extended SimpleCAR to include proposed heuristics
 - Intersection, Rotation, Combination, or None
 - Order of state enumeration; pick *s* from F-sequence
- Tools and algorithm categories compared:
 - ABC (pdr, 3 x bmc)

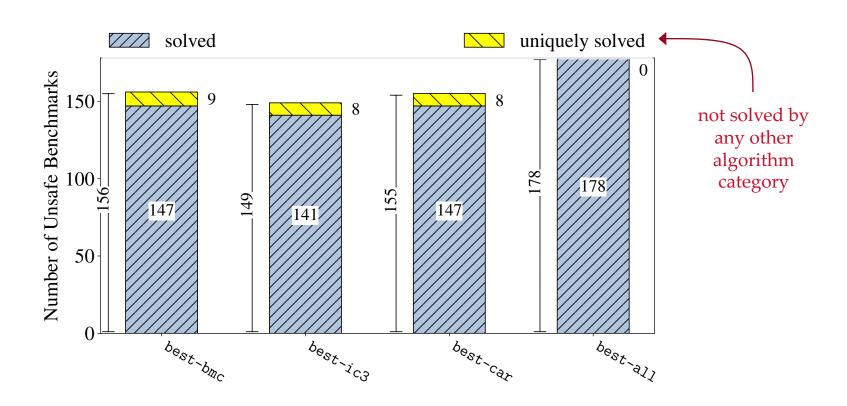
- Simplic3 (bmc, 3 x ic3, Avy)
- IIMC (bmc, ic3, Quip, ic3r)
 SimpleCAR (8 x car)

- IC3Ref (ic3)
- 5 tools, 22 algorithms, 748 SINGLE property benchmarks from HWMCC
- 1 hour timeout
- Identified a bug, and counterexample generation errors
- We focus on unsafety checking

Open-source under GNU GPLv3 http://temporallogic.org/research/VSTTE19/

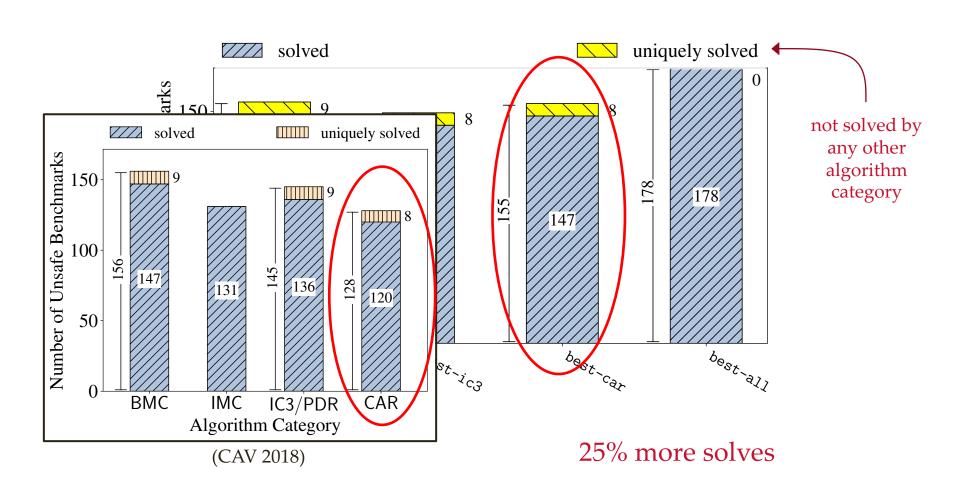
High-level Performance

Algorithm Categories



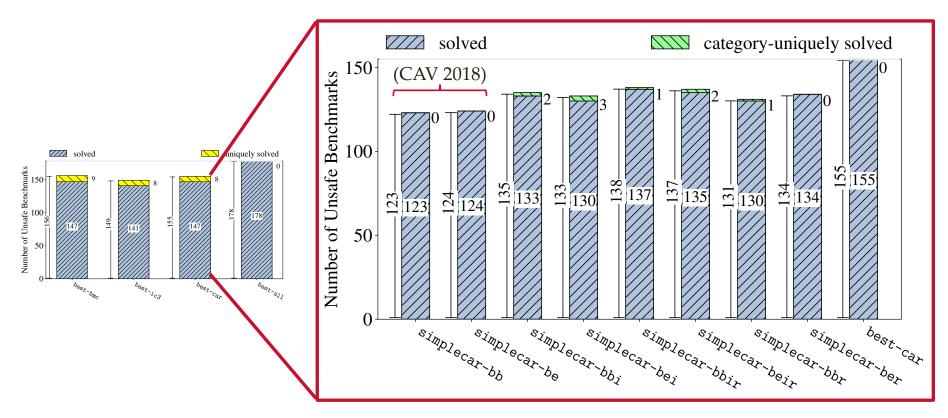
High-level Performance

Algorithm Categories



High-level Performance

Virtual-best CAR



simpcar-bbir gives 20% smaller unsat cores

On-average 30% faster

Faster convergence!

Summary and Discussion

- Design-space exploration via model checking; many models/requirements
- Focus along four verticals
 - Design-space reduction
 - Incremental verification

- Improved orchestration
- Model checking algorithms
- Applicable to equivalence checking, product lines, regression runs, etc.
 - Extensions to existing algorithms, and new specialized algorithms
- Better handling of SAT queries improves model checking performance
 - Proposed two heuristics: Intersection and Rotation
- Heuristics can also be applied for clause generalization in IC3
- Future work and research questions
 - SAT-solver internal heuristics for literal scoring
 - Adapting CAR to handle multiple properties; clause sharing between properties
 - Improved synergy between model checking algorithms and SAT solvers

Thank You!

http://temporallogic.org/research/VSTTE19/