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Abstract—IC3 is a highly-effective algorithm for formal hard-
ware verification. It cleverly uses a SAT solver to compute an
inductive invariant, an over-approximation of reachable states,
of a hardware design. The invariant is computed in CNF as
a conjunction of lemmas. This CNF representation over state
variables, although efficient, leads to an obvious deficiency: IC3 is
not effective for designs that do not have a concise CNF invariant
over state variables. We show how to remedy this deficiency by
extending traditional IC3 to learn invariants not only in terms of
state variables, but also in terms of internal signals of the design.
Our proposed method can learn significantly more compact
invariants than IC3, while maintaining a highly-efficient CNF
representation. We evaluate our technique on several industrial
sequential equivalence checking (SEC) problems from IBM, SEC
problems derived from designs in the Hardware Model Checking
Competition (HWMCC) and SEC problems from academia. In
addition, we evaluate it on HWMCC benchmarks. IC3 with
internal signals is efficient for SEC and outperforms traditional
IC3 on an important class of benchmarks.

I. INTRODUCTION

IC3 [1], [2] is a powerful algorithm for formal hardware
verification, and is the primary model-checking engine in
various state-of-the-art formal verification tools. IC3, and its
several variants [3], is especially useful for establishing system
safety (i.e., discovering an inductive invariant). Whenever IC3
succeeds in proving safety, it finds an inductive invariant
justifying the property. Traditionally, such an invariant is a
conjunction of lemmas represented in CNF, each lemma is
a disjunction of literals, and each literal is either a state
variable or its negation. Conversely, IC3 does not succeed in
proving a property when it is unable to find such an inductive
invariant within the specified verification-resource limits. This
can happen for one of two reasons: (i) a small inductive
invariant exists but IC3 is unable to find it, or (ii) a small
inductive invariant does not exist. It is difficult to determine
which of these two cases is responsible for IC3 failing to prove
a property. Most research on improving IC3 (e.g., [4]–[6])
focuses on quickly finding the inductive invariant. However,
finding the inductive invariant quickly can only help if a
(reasonably) small invariant exists in the first place.

A known Achilles heel of IC3 are model-checking problems
for which any inductive invariant (over state variables) is
necessarily exponential in size. For example, let x1, . . . , xn be
state variables, and suppose that the set of reachable states is
characterized by {x1, . . . , xn | x1⊕· · ·⊕xn = 1}, while the set
of bad states is characterized by {x1, . . . , xn | x1⊕· · ·⊕xn =
0}. In this case the (only) inductive invariant is exponential in
size and contains 2n−1 clauses that correspond to representing
x1 ⊕ · · · ⊕ xn = 1 in CNF. With n = 3, the inductive

invariant contains four clauses: (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨
x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3). A possible
work-around is to extend the design with additional signals
that are necessary to concisely represent an invariant. In this
example, IC3 extended with a lemma over z = x1⊕· · ·⊕xn,
can find a tiny inductive invariant consisting of only a single
unit-clause lemma: (z = 1).

This leads to the question of which additional signals to
consider. A possible solution is to consider variables that
represent logic gates in the transition relation of the system
model. We refer to these as internal nets or innards. Prior
work [7] uses innards to extend ternary valued simulation of
counterexamples to induction in IC3, which enables a succinct
description of the set of states that IC3 must eventually block.
In this paper, we propose an approach based on learning
lemmas directly over innards that improves the performance
of IC3 in establishing safety by finding more concise inductive
invariants. Our method of learning lemmas over internal nets
can be viewed as a form of inductive generalization. A lemma
is first generalized as usual, and then literals corresponding
to latches are replaced by internal nets. Specifically, whenever
IC3 learns a lemma C over state variables, it also tries to
learn an additional lemma C2 over state variables and internal
signals. To this end, we first extend C to a lemma C1

that is logically equivalent to C but contains the literals of
C and (certain) internal nets. We obtain C2 by inductively
generalizing C1, while guiding the inductive generalization to
remove state variables. It is guaranteed that C2 is stronger than
C. Therefore, C2 blocks the same states (and maybe more) as
C. We then add lemma C2 to IC3’s inductive trace, so that it
can be used for predecessor queries and convergence checks.
A major advantage of our approach is that it can be easily
integrated with any existing mature IC3 implementation.

Our work is motivated by a challenging set of microproces-
sor verification problems that arise from the Aspect-Oriented
Design (AOD) methodology used at IBM. The verification
problem checks sequential equivalence of an original design
against a new version of the design with added aspects (e.g.,
clock-gating, logging, or debug interfaces). The complex veri-
fication challenge is broken into many sub-tasks using a com-
bination of the usual sequential equivalence checking (SEC)
approaches, including k-induction, speculative reduction, and
localization [8]–[12]. Verification sub-tasks that are not solved
by these techniques are then checked using Interpolation-based
Model Checking (IMC) or IC3. Traditional IC3 scales very
poorly for these verification problems. On the other hand, IMC
works rather well but is not stable – small changes in the
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design negatively impact verification times. The proposed IC3
algorithm with internal signals significantly outperforms both
IMC and traditional IC3.

The proprietary nature of IBM AOD verification problems
prohibits detailed public disclosure. Nevertheless, we apply
the IBM AOD sequential equivalence checking flow on two
selected benchmarks from the Hardware Model Checking
Competition (HWMCC) to validate equivalence between the
original design and its retimed [13] versions. Each such
equivalence-check generates hundreds of verification problems
of which some are solved by k-induction, but a significant
number remain unsolved. We note that IC3 with internal
signals is more effective than traditional IC3 in solving the
remaining equivalences for both SEC problems. We also
apply our algorithm on a small set of publicly available SEC
benchmarks [14] from academia, and note that our proposed
algorithm is able to solve a higher number of equivalences
compared to traditional IC3. This suggests that using internal
nets in IC3 is especially effective for difficult sequential
equivalence checking problems.

To further validate the efficacy of IC3 with internal signals,
we apply the proposed algorithm to a variety of single-property
benchmarks from HWMCC. However, the technique does not
show a significant improvement unlike our experience with
IBM AOD and other benchmarks. There are a few HWMCC
benchmarks that are solved significantly faster and some that
are uniquely solved by our algorithm, but overall, traditional
IC3 is superior. Interestingly, the number of designs where
the new technique succeeds increases in the latest competition
editions that are based on word-level designs. This points
to a deficiency of any benchmark set – the distribution of
problems in the set does not necessarily correspond to their
distribution in practice. Techniques that perform well on only
a few benchmarks in the set, might actually be very effective
in some practical application!

The rest of the paper is organized as follows. Section II
provides the necessary background. Section III describes mo-
tivating examples to highlight the core deficiency of IC3
addressed by our approach. Section IV describes the IC3
algorithm with internal signals, while Section V reports on
our experimental evaluation. Section VI discusses related and
future work, and Section VII concludes.

II. BACKGROUND

A. Safety Verification Problem

We represent a finite state transition system S as a tuple
⟨i, x, Init(x),Tr(i, x, x′)⟩, which consists of primary inputs i,
state variables x, predicate Init(x) defining the initial states,
and predicate Tr(i, x, x′) defining the transition relation. Next-
state variables are denoted as x′. We assume that Tr is
represented as a netlist, that is, a directed acyclic graph with
nodes corresponding to logic gates. Given the values of x
and i, the values of x′ may thus be uniquely computed by
(constant) propagation – i.e., using Boolean or three-valued
simulation. We say that a net is either an input, a state variable
or a logic gate. We refer to state variables and their negations

as latches, and to internal logic gates and their negations as
innards. We say that an innard is input-free if it does not have
any inputs in its combinational cone-of-influence.

A clause is a disjunction of literals, where each literal is
either a net or its negation. We say that a clause is over
latches to emphasize all the literals in the clause are latches.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A cube is a conjunction of literals.
A Boolean formula in Disjunctive Normal Form (DNF) is a
disjunction of cubes. It is often convenient to treat a clause
or a cube as a set of literals, a CNF as a set of clauses, and
DNF as a set of cubes. For example, given a CNF formula F ,
a clause c and a literal ℓ, we write ℓ ∈ c to mean that ℓ occurs
in c, and c ∈ F to mean that c occurs in F .

A trace is a sequence of Boolean valuations to the nets,
starting with an initial state satisfying Init and with successive
time-step valuations consistent with Tr . Reachable states,
denoted by Reach, are states that can be reached on a trace.
Let Bad(x) be a predicate defining bad (or unsafe) states.
The safety verification problem consists of checking whether
Reach ⇒ ¬Bad , that is either finding a trace that leads to a
state in Bad or showing that such a trace does not exist.

B. Traditional IC3

We give a very brief and high-level description of IC3,
concentrating on the components that are relevant for this
work. This description includes the classical IC3 algorithm [1],
[2], and some of its variants such as [6]. In what follows, we
refer to all these algorithms simply as IC3.

IC3 proves safety by finding a formula Inv(x), called a safe
inductive invariant, that satisfies the following conditions:

Init(x)⇒ Inv(x) (1)
(Inv(x) ∧ ∃i · Tr(i, x, x′))⇒ Inv(x′) (2)
Inv(x)⇒ ¬Bad(x) (3)

The computed formula Inv(x) is in CNF over latches. In-
ternally, IC3 maintains sets of clauses F0, F1, . . . called an
inductive trace. Each Fk in a trace is called a frame, each
clause c ∈ Fk is called a lemma, and the index of a frame
is called a level. We assume that F0 is initialized to Init and
that Init ⇒ ¬Bad . IC3 maintains the following invariant:

F0 = Init Fk+1 ⊆ Fk Fk ∧ Tr ⇒ F ′
k+1

Note that the inductive trace maintained by IC3 is syntactically
monotone, and each Fk+1 is inductive relative to Fk. Let
Reach≤k denote the set of states reachable from Init in k
steps or less. It holds that Reach≤k ⇒ Fk, i.e., Fk is an
over-approximation of states reachable in k steps or less.

Additionally, IC3 maintains a queue of proof obligations
(or CTI’s) of the form ⟨m, k⟩ where m is a cube over latches
and k > 0 is a level. At each point of the execution, it
considers a proof obligation ⟨m, k⟩, and makes an initial query
SAT?(Init∧¬m) that checks whether a state in m is an initial
state, and a predecessor query SAT?(¬m∧Fk−1 ∧Tr ∧m′)
that checks whether a state in m can be reached from a



state in Fk−1. If both results are unsatisfiable, IC3 can add
the lemma ¬m to all Fj , for j ≤ k, refining the inductive
trace. However, for performance it is crucial to inductively
generalize ¬m first, finding a lemma φ ⊆ ¬m, that also
satisfies Init ⇒ φ and φ ∧ Fk−1 ∧ Tr ⇒ φ′ (some IC3-
variants such as Quip also keep an under-approximation of
Reach and modify Init to include this under-approximation).
The inductive generalization is typically done by removing
literals from ¬m while the two conditions remain satisfied.
We refer the reader to [3] for more details.

IC3 periodically pushes all lemmas, by checking if a lemma
φ ∈ Fk \Fk+1 can be added to Fk+1 as well. If at any point,
Fk = Fk+1 and Fk ⇒ ¬Bad , then we can take Inv = Fk as
the safe inductive invariant.

III. MOTIVATING EXAMPLES

In this section, we motivate our work with several examples.
Each is a series of problems such that inductive invariants in
CNF over latches grow exponentially, while the corresponding
inductive invariants over latches and innards grow linearly. The
examples are sketched briefly here, we provide full details with
AIGER and source files in the companion repository.1 Note
that the examples are distilled to their essence. For some, the
property itself is inductive. Thus, traditional IC3 that learns
invariants over latches and the property is able to solve them.
However, the illustrated problems remain when the examples
are parts of a larger design, and the property is more complex
and is no longer inductive on its own.

Example 1 (Parity) Let x1, . . . , xn be the latches. The set
of reachable states is characterized by {x1, . . . , xn | x1 ⊕
· · · ⊕ xn = 1}. The set of bad states is characterized by
{x1, . . . , xn | x1 ⊕ · · · ⊕ xn = 0}. Note that the only safe
inductive invariant over latches has 2n−1 clauses representing
x1 ⊕ · · · ⊕ xn = 1 in CNF. Yet, there is a safe inductive
invariant consisting of a single lemma, (z = 1), for the innard
z = x1 ⊕ · · · ⊕ xn. 2

Example 2 (from [15]) Consider two counters that count
modulo-2n, whose state bits are s = (s0, . . . , sn−1) and
t = (t0, . . . , tn−1), respectively. Let i be an input. When i = 0
both counters keep their values; when i = 1 both counters
increment their values by one modulo 2n. Suppose that the
initial state is {s ̸= t}, and the bad state is {s = t}. The
work [15] argues that any safe inductive invariant for the usual
IC3 must contain at least 2n lemmas. Furthermore, there is a
much smaller safe inductive invariant for the Reverse IC3 that
consists of 2n lemmas required to represent s = t in CNF.
With innards, there is an inductive invariant consisting of a
single lemma, (z = 1), for the innard z = (s ̸= t). 2

Example 3 (SEC) This example illustrates a sequential
equivalence checking problem between an original and a
retimed [13] design. Let the “original part” of the design
consist of latches x1, . . . , xn and inputs i1, . . . , in, such that
init(xk) = 0 and next(xk) = ik for k = 1, . . . , n, and a net

1https://github.com/agurfinkel/innard-benchmarks.

z = x1⊕· · ·⊕xn. Let the “retimed part” of the design consist
of a net u = i1 ⊕ · · · ⊕ in and a latch v with init(v) = 0
and next(v) = u. Let the the bad state be {z ̸= v}. The only
safe inductive invariant is v ↔ (x1 ⊕ · · · ⊕ xn), that consists
of 2n lemmas in CNF. With innards, an alternative invariant
requires only two lemmas: v → z and z → v. 2

Example 4 This example is motivated by the benchmark
rast-p16 from HWMCC’20. The design contains latches
x1, . . . , xn and y1, . . . , yn, and innards z1 = x1 ∧ y1, . . . ,
zn = xn ∧ yn. Assume that the lemma C = (z1 ∨ · · · ∨ zn)
over innards is inductive. Representing C in CNF over latches
requires 2n lemmas. For example, for n = 3, the lemma
(z1 ∨ z2 ∨ z3) is equivalent to 8 lemmas (x1 ∨ x2 ∨ x3),
(x1 ∨ x2 ∨ y3), (x1 ∨ y2 ∨ x3), (x1 ∨ y2 ∨ y3), (y1 ∨ x2 ∨ x3),
(y1 ∨ x2 ∨ y3), (y1 ∨ y2 ∨ x3), (y1 ∨ y2 ∨ y3). 2

IV. FINDING LEMMAS OVER INNARDS

In this section, we provide an overview of our approach
(Sec. IV-A), followed by an algorithm for extending IC3
lemmas with innards (Sec. IV-B), and finally an algorithm for
inductive generalization in the presence of innards (Sec. IV-C).

A. The overall approach

Traditional IC3 learns lemmas by inductively generalizing
negations of blocked proof obligations. Both proof obligations
and lemmas are over latches. These lemmas are then added to
IC3’s inductive trace and used in future predecessor and con-
vergence checks. In our approach, proof obligations are also
over latches (exactly the same as in traditional IC3), however,
we extend learning lemmas over both latches and innards.
Our results apply to arbitrary innards, but for simplicity of
presentation in the rest of the paper, we restrict to input-free
innards, calling them simply innards. Note that unlike [7], our
restriction is for presentation only. Throughout the section, we
use the following running example.

Example 5 Let w, x, y, z be latches and i be an input. Let

Init ≜ w ∧ x ∧ y ∧ z

Tr ≜ (w′ = ¬w) ∧ (x′ = w) ∧ (y′ = w) ∧
(g = x ∧ y) ∧ (h = g ∧ i) ∧ (z′ = h)

This design has two gates: g = x ∧ y and h = g ∧ i, where g
is input-free and h depends on the input i. Hence, the set of
(input-free) innards is {g}. 2

We extend IC3 to reason about innards in the initial state
and the next state. To this end, let Tr inn be the part of the
transition relation that defines innards, and let Înit ≜ Init ∧
Tr inn and T̂r ≜ Tr ∧ Tr inn

′. In Example 5,

Tr inn = (g = x ∧ y) Înit = Init ∧ (g = x ∧ y)

T̂r = Tr ∧ (g′ = x′ ∧ y′)

where g′ is a copy of g in “the next state”. The following
definition extends relative induction [1] to lemmas over latches
and innards.

https://github.com/agurfinkel/innard-benchmarks


Input: Frame k, Lemma C over latches, s.t. C is
inductive relative to Fk

Output: Lemma C2 over latches and innards, s.t. C2 is
inductive relative to Fk

1 C1 ← ExtendLemma(C)
2 C2 ← InductivelyGeneralize(k,C1)
3 return C2

Fig. 1. Procedure LearnAdditionalLemma.

Definition 1 A lemma C over latches and innards is induc-
tive relative to a set of lemmas G iff (i) Înit ⇒ C, and
(ii) G ∧ T̂r ∧ C ⇒ C ′.

Def. 1 generalizes the original definition: if a lemma C
over latches is relatively inductive in the original sense of [1],
then C is also relatively inductive by Def. 1. In what follows,
by relatively inductive, we always mean Def. 1. Continuing
our running example, let C = (w ∨ x) (note that C is over
latches), and C1 = (w ∨ x ∨ g) (note that C1 is over latches
and innards). Then, both C and C1 are inductive relative to
G = ⊤. Note that Înit ⇒ C, ⊤ ∧ T̂r ∧ C ⇒ C ′, Înit ⇒ C1,
⊤ ∧ T̂r ∧ C1 ⇒ C ′

1 hold.
The following lemma shows that using relatively inductive

(in the sense of Def. 1) lemmas in IC3 is sound.

Lemma 1 (Soundness) For any lemma C over latches and
innards, if Înit ⇒ C and Fk ∧ T̂r ∧ C ⇒ C ′ hold, then C
includes R≤k+1 (all the states reachable in up to k+ 1 steps
from Init). In particular, C can be added to IC3’s inductive
trace up to the frame k + 1.

Our approach of learning lemmas over innards is a
form of inductive generalization. Each time that IC3
blocks a proof obligation and learns a (relatively induc-
tive) lemma over latches, we generalize it into an (addi-
tional) lemma over latches and innards. The overall algorithm
LearnAdditionalLemma is shown in Fig. 1. We give
a high-level overview of LearnAdditionalLemma, while
the details of key functions are described in later sections. The
approach consists of two steps:

Step 1: The procedure ExtendLemma extends lemma C (over
latches) to a lemma C1 = C ∨ C0 (over latches and innards)
such that Tr inn ⇒ (C ⇔ C1), i.e. C and C1 are equivalent
modulo Tr inn. The details are in section IV-B. For instance,
in our example lemmas C = (w ∨ x) and C1 = (w ∨ x ∨ g)
are equivalent, given that g = x ∧ y. Indeed, modulo Tr inn:
(w ∨ x ∨ g) ≡ (w ∨ x ∨ (x ∧ y)) ≡ (w ∨ x). It also follows
(see Lemma 1) that C1 remains relatively inductive.

Step 2: The procedure InductivelyGeneralize induc-
tively generalizes C1 by removing literals, while prioritizing
removal of latches (the original literals of C), and more gener-
ally trying to leave only the “intereresting” innards. The details
are in section IV-C. In our example, lemma C1 = (w∨x∨ g)
can be generalized to C2 = (w ∨ g).

By construction, it follows that C2 remains inductive rela-
tive to Fk. Moreover, as Tr inn ⇒ (C ⇔ C1), and C2 ⇒ C1,
then C2 is potentially stronger than the original lemma C (but
the converse might not hold). In our example, C2 = (w∨g) is
equivalent to (w∨ (x∧y)) = (w∨x)∧ (w∨y), i.e. the lemma
C2 over latches and innards represents two different lemmas
over latches only. It is also interesting to note that while the
original lemma C was over latches {w, x}, the “additional”
lemma (w ∨ y) is over a different set of latches {w, y}.

Whenever ExtendLemma does not add any innards to
C, the procedure LearnAdditionalLemma stops imme-
diately, without calling InductivelyGeneralize. How-
ever, note that even when ExtendLemma adds new lit-
erals, it is possible that InductivelyGeneralize re-
moves them, resulting in the original lemma C! When
LearnAdditionalLemma returns a lemma C2 that is dif-
ferent from C, C2 is also added to IC3’s inductive trace (up
to frame Fk+1), and hence is also used in future predecessor
and pushing queries.

B. Extending lemmas with innards
The procedure ExtendLemma receives a lemma C over

latches as input and returns a lemma C1 over latches and
innards as output. It iteratively finds innards z such that
Tr inn ⇒ (z ⇒ C) and replaces C with C ∨ z. It works
as follows: instead of searching for an innard z that implies
C, it searches for all innards ¬z that are implied by ¬C
and take their negations. Specifically, given a lemma C =
(c1∨· · ·∨cm), we set each ci ∈ C to 0 and find which innards
are implied by constant propagation in the Tr inn part of the
netlist. The algorithm for constant propagation in a netlist is
standard and is not presented here.

Going back to our running example, given a lemma C =
(w ∨ x), we are looking for innards implied by the partial
assignment (w = 0)∧(x = 0). Since g = x∧y, by propagation
we obtain that g = 0. Thus, modulo Tr inn, g ⇒ C, and
hence C is equivalent to (C ∨ g) = (w ∨ x ∨ g). Note that
by not considering input-free innards only (recall, we consider
only input-free innards for simplicity of presentation), then, by
propagation, we would also obtain that h = (g ∧ i) = 0. This
would allow us to extend C to (C ∨ g ∨h) = (w∨x∨ g ∨h).
The following lemma follows by construction.

Lemma 2 Given lemma C over latches, the procedure
ExtendLemma returns a lemma C1 over latches and innards
such that Tr inn ⇒ (C1 ⇔ C).

Corollary 1 Let C and C1 be lemmas over latches and
innards respectively, such that (i) C is inductive relative to
some G, and (ii) Tr inn ⇒ (C1 ⇔ C). Then, C1 is also
inductive relative to G.

We remark that extending lemmas with literals that imply it
is closely related to asymmetric literal addition [16] in SAT.
We also remark that the condition that the original lemma C is
over latches is not essential, and ExtendLemma can be used
to extend lemmas that already have innards in them. This may
be potentially useful for additional IC3 extensions.



Input: Frame k, lemma C over latches and innards, s.t.
C is inductive relative to Fk

Output: (Inductively generalized) lemma C2 ⊆ C over
latches and innards, s.t. C2 is inductive relative
to Fk

1 C ← SortLemma(C) // C = {c1, . . . , cn}
2 for i = 1, . . . , n do
3 if ci has already been removed from C then

// do nothing
4 else if Tr inn ⇒ ((C \ ci)⇔ C) then
5 C ← C \ ci
6 else if Înit ⇒ C \ ci and

Fk ∧ T̂r ∧ (C \ ci)⇒ (C \ ci)′ then
7 C ← C \ ci
8 for j = i+ 1, . . . , n do
9 if cj not used in the above proofs then

10 C ← C \ cj
11 else
12 break
13 return C

Fig. 2. Procedure InductivelyGeneralize: inductively generalizes
lemmas over latches and innards.

C. Inductively generalizing lemmas with innards

Inductive generalization in traditional IC3 starts with a
relatively inductive lemma C over latches (satisfying the
conditions Init ⇒ C and Fk ∧ Tr ∧ C ⇒ C ′ with respect
to a given frame Fk), and attempts to remove literals from C
as long as C remains relatively inductive. The same procedure
can be immediately applied to a lemma over latches and
innards, once Înit and T̂r are used instead of Init and Tr ,
respectively. However, we found that a naive application of
inductive generalization gives poor results. In most cases,
it simply removes the innards that were previously added
by ExtendLemma, and therefore, ends up with the original
lemma over latches. Moreover, regular inductive generalization
does not exploit possible dependencies between innards.

Fig. 2 shows a variant of inductive generalization that is
better suited for generalizing lemmas over innards. The first
step (line 1), consists of sorting the nets in the lemma, from
the nets that we want to remove most to the nets that we want
to remove least. In particular, we want to prioritize removal
of latches, so as to obtain a different lemma that we started
with. In our current implementation, we sort the nets by their
logic level, so that latches have the lowest level and deeper
nets in general have higher level. This way deeper nets are
considered “more interesting” and the algorithm attempts to
remove shallower nets first. Other heuristics can be considered
as well, e.g., sorting the nets by the size of the supporting logic,
or even dynamic heuristics that measure the activity of a net
in previously generalized lemmas.

The main loop (lines 3–12) corresponds to inductive gen-
eralization in regular IC3: essentially, we remove literals of
C one by one, as long as C remains relatively inductive. We

provide a detailed description of one iteration of the loop.
Suppose that ci is the literal under consideration.
1) Note that multiple literals can be removed from C in a
single iteration of the loop (this optimization is also present
in regular IC3 inductive generalization), so at the start of the
iteration (line 3), we check if ci has already been removed. If
so, nothing needs to be done.
2) Lines 4–5 correspond to a special optimization that exploits
dependencies between innards: in some cases, we can detect
that ci can be removed without requiring a SAT query. For
instance, ci can be removed when one of the following
conditions holds:
(i) ci = a ∧ b, with a ∈ C,
(ii) ci = a ∨ b, with a, b ∈ C, or
(iii) there is an innard d ∈ C with d = ci ∨ b.
For example, suppose that C = (a∨c∨d) and {d = (b∨c)} ∈
Tr inn. Then, modulo Tr inn, C ⇔ (C \ c), i.e. (a ∨ c ∨ d)
can be replaced by (a∨d). This closely corresponds to hidden
literal elimination technique in SAT [17], and can be viewed
as the inverse of the argument used in ExtendLemma.
3) Line 6 checks whether ci can be removed using two SAT-
queries. One query checks the validity of Înit ⇒ (C \ ci), by
checking whether Înit ∧ ¬(C \ ci) is unsatisfiable. The other
query checks the validity of Fk ∧ T̂r ∧ (C \ ci)⇒ (C ′ \ c′i) by
checking whether Fk∧T̂r∧(C\ci)∧¬(C ′\c′i) is unsatisfiable.
If both of these queries are unsatisfiable, ci can be removed.
4) IC3 has the following standard optimization based on
considering which of the literals of (C \ ci) were potentially
required for unsatisfiability: if cj ∈ C was not required
for either checks, then cj can be removed. This is typically
implemented by passing the literals of ¬(C \ ci) via SAT
assumptions and analyzing the set of conflicting assumptions; a
mechanism supported by most modern SAT-solvers, following
MINISAT [18]. However, simply removing all non-required
literals regardless of their order in C is more likely to remove
the “more interesting” literals that we want to keep. So, our
variant of this optimization (lines 8–12) only removes non-
required literals with respect to the order. As an example,
suppose that C = (c1 ∨ c2 ∨ c3 ∨ c4 ∨ c5 ∨ c6) (in this order),
and that only the literals c4 and c6 were potentially required
for unsatisfiability queries involving C \ c1. In addition to
removing c1, we also remove c2 and c3, but not c5, and at the
end of the iteration of the loop, C = (c4∨c5∨c6). Intuitively,
this works better because leaving c5 in the lemma increases
the chances to remove c5 and to leave c6 (and not vice versa)
on the following iterations of the loop. Lastly, in most cases
an assumption-based SAT-solver applies assumptions in the
order as they are given, hence, the assumptions appearing
earlier are more likely to remain (while later assumptions
are more likely to be removed). Therefore, when performing
the SAT queries, we reverse the order of assumption literals,
for instance when checking whether c1 can be removed from
C = (c1 ∨ c2 ∨ c3 ∨ c4 ∨ c5 ∨ c6), the assumptions are ordered
from c6 to c2 (and not from c2 to c6).

Note that during the regular inductive generalization (i.e.,



when computing the original lemma over latches) it is benefi-
cial to make multiple passes over the main loop (lines 3–12).
However, when generalizing lemmas over innards, performing
multiple passes has not proven to be useful, so we only
perform a single pass.

Lemma 3 Given a lemma C1 over latches and innards, the
InductivelyGeneralize procedure returns a lemma C2

that is relatively inductive with respect to Fk.

Going back to our running example, suppose that C1 =
(w ∨ x ∨ g) is inductive relative to Fk = ⊤. The procedure
SortLemma is not likely to change the order of nets, as the
latches already appear first. On the first iteration of the main
loop, we attempt to remove w, but this fails as the SAT query
⊤ ∧ T̂r ∧ (x ∨ g) ∧ ¬x′ ∧ ¬g′ is satisfiable. On the second
iteration, we attempt to remove x, and succeed, reducing C1

to (w∨g). Finally, we attempt to remove g, which again fails.
The final lemma returned by the algorithm is C2 = (w ∨ g).

V. EXPERIMENTS

In this section, we present our experimental results. The
techniques described in this paper are implemented in the IBM
formal verification tool Rulebase: Sixthsense Edition [19]. In
what follows, we denote by IC3 the default variant of IC3
used by the tool (see [6]), and by IC3-INN the variant with the
additional learning of lemmas over innards. For these experi-
ments, we restrict to input-free innards. Table I summarizes the
experiments. The table contains the benchmark set (explained
in detail later), the number of instances in this set, time-limit
per instance, and the data on performance of IC3 and IC3-INN.
All the instances either are or expected to be unsatisfiable.
For both IC3 and IC3-INN, we list the number of solved
instances, and in parentheses – the number of uniquely solved
instances (that is, not solved by the other configuration), and
the cumulative runtime in seconds. Next, we describe each
benchmark set in detail.

A. IBM-AOD-SEC

This set of benchmarks comes from checking sequential
equivalence between two designs in the Aspect Oriented
Design flow at IBM. This SEC problem is very challenging,
and is traditionally solved as described in [8], [9], using spec-
ulative reduction to reduce the problem into multiple simpler
(but still hard) sub-problems. These are then solved using
a dedicated engine configuration consisting of combinational
rewriting, k-induction, localization, and, eventually, a proof-
based technique like IC3. Historically, Interpolation (IMC)
was used for the final step. Generally IMC works well, but
unfortunately, it’s not stable – small changes in the design
or in the solving configuration significantly affect verification
times. While trying to find an alternative configuration, it
was discovered that IC3 performs very poorly, while IC3-INN
significantly outperforms all other approaches.

In total, there are 3 605 sub-problems. Each sub-problem
contains 1–45 properties, 11–165 state elements, 126–2 290
inputs, and 754–15 924 gates. The (input-free) innards on

(a) Solved vs. Runtime (b) Invariant size

Fig. 3. Performance of IC3 and IC3-INN on AOD SEC benchmarks.

average constitute 3% of the gates. For this experiment, we
run both IC3 and IC3-INN with a time-limit of 300 seconds
per problem. Referring to Table I, regular IC3 peforms very
poorly: it can solve only 2 562 of the sub-problems and times
out in the 1 043 remaining cases. On the other hand, IC3-INN
performs extremely well: it can solve all of the problems, with
the maximum run-time being only 36 seconds. Interestingly,
IMC performs much better than IC3 on this set of problems
and is also able to solve all problems (albeit about 13 times
slower than IC3-INN). See the cactus plot in Fig. 3a for the
detailed comparison between IC3, IC3-INN, and IMC.

A further comparison consists of comparing the number of
lemmas in the safe inductive invariants discovered by IC3 and
IC3-INN respectively. The scatter plot Fig. 3b shows this data
for the 2 562 instances solved by both configurations. We can
see that IC3-INN discovers invariants that are significantly
more compact, with the inductive invariants discovered by
IC3-INN being on average 12× smaller than the invariants
discovered by IC3. This partially explains the success of IC3-
INN compared to IC3 on this set of benchmarks.

We also give data on the effectiveness of
LearnAdditionalLemma, averaged across all 3 605
test-cases. On average, the original lemma C (over
latches) has 7 latches; ExtendLemma adds 10 innards;
InductivelyGeneralize shrinks the lemma to 2
latches and 1 innards. The average logic level of innards
is 7. Thus, LearnAdditionalLemma is able to produce
significantly shorter lemmas using deep innards in the design.

Unfortunately, this benchmark set is proprietary and cannot
be publicly released at this time.

B. 6s119-SEC, 6s22-SEC

Inspired by the success of IC3-INN on internal IBM bench-
marks, we tried to manually create similar test-cases starting
from publicly available benchmarks. Specifically, we have
taken several HWMCC designs, and created problems to check
sequential equivalence between the original design and the
retimed design [13]. We have further applied the SEC flow
described above, consisting of breaking the main problem into
multiple sub-problems using speculative reduction. It turns
out that creating interesting benchmark sets in this way is
non-trivial: in many cases the speculatively reduced problems
turn out to be very easy, in many other cases some of these
speculatively reduced problems turn out to be satisfiable (in



TABLE I
SUMMARY OF EXPERIMENTAL RESULTS

benchmarks #instances time-limit per instance IC3 solved (unique) IC3 time IC3-INN solved (unique) IC3-INN time

IBM-AOD-SEC 3 605 300 2 562 (0) 424 885 3 605 (1 043) 2 465

6s119-SEC 364 600 364 (0) 2 906 364 (0) 1 207
6s22-SEC 310 600 262 (22) 32 701 278 (38) 24 774

AES-SEC 16 3 600 13 (0) 11 186 15 (2) 5 601

HWMCC11 278 3 600 277 (6) 40 186 272 (1) 55 557
HWMCC17 76 3 600 76 (0) 7 963 76 (0) 11 221
HWMCC20 192 3 600 190 (5) 35 907 187 (2) 41 448

(a) 6s119-SEC (b) 6s22-SEC

Fig. 4. Runtime of IC3 and IC3-INN on 6s119-SEC and 6s22-SEC.

the real SEC flow this would trigger refinement and another
speculative reduction). Nevertheless, we have created two
benchmark sets 6s22-SEC and 6s119-SEC, available at https://
github.com/agurfinkel/innard-benchmarks. The set 6s119-SEC
consists of 364 rather easy problems, so that both IC3 and
IC3-INN can solve all of them within 600 seconds, with IC3-
INN being about 2.4× faster. The set 6s22-SEC consists of
310 problems, out of which IC3 can solve 262 problems and
IC3-INN can solve 278 within 600 seconds. Please refer to
Table I. Again, IC3-INN performs better than IC3, and is on
average 1.3× faster. A more precise comparison is given in
scatter plots in Fig. 4. A detailed comparison against IMC
is not included as on both sets of problems IMC performs
significantly worse than either IC3 or IC3-INN (for instance,
within 600 seconds IMC cannot solve 64 out of 364 problems
even for the easy set 6s119-SEC).

C. Other SEC benchmarks; AES-SEC

As far as we know, there are no publicly available large SEC
benchmark sets. HWMCC competitions do include several
SEC benchmarks. However, in general we do not know which
benchmarks come from SEC or what kind of application they
represent. We believe it would be valuable to have a dedicated
repository for SEC benchmarks.

The AES-SEC benchmark set was used in [14]. We have
obtained this set from the authors of [14] in BTOR format,
and translated it to AIGER. The AIGER benchmarks are
available at https://github.com/agurfinkel/innard-benchmarks.
In total, there are 16 problems, 12 of which turn out to be
very easy for both IC3 and IC3-INN. Out of the 4 remaining

(a) HWMCC’11 (b) HWMCC’17 (c) HWMCC’20

Fig. 5. Runtime of IC3 and IC3-INN on HWMCC benchmarks.

problems, IC3 can solve 1, and IC3-INN can solve 3. Please
see Table I for details.

D. HWMCC benchmarks

We have run extensive experiments on the single-
property benchmarks from HWMCC’11, HWMCC’17 and
HWMCC’20 competitions (for the latter, we used the bench-
marks in the AIGER format). In each case, we run simple
combinational reductions prior to running IC3, and used the
time-limit of 3 600 seconds. In Table I, we only report data
for passing benchmarks that were solved either by IC3 or IC3-
INN. In general, IC3-INN performs worse than IC3 both in
terms of the number of properties solved and the total runtime.
Detailed comparisons are presented as scatter plots in Fig. 5.

Table II presents data for 4 selected benchmarks. The
benchmark rast-p16 is very interesting: regular IC3 times out,
yet IC3-INN solves the testcase in just 2 seconds. Futhermore,
this benchmark was solved by relatively few tools in the
HWMCC’20 competition. By closely examining the lemmas
learned by IC3-INN exposed the pattern from Example 4
from Section III. In other words, IC3-INN learns lemmas
over innards, each equivalent to a very large number of
lemmas over latches. This potentially explains the success
of IC3-INN in this case. Another noteworthy benchmark is
zipversa composecrc prf-p10, which IC3-INN solves under
5 minutes, and which was solved only by one tool in the
HWMCC’20 competition. The other two benchmarks ex-
posed a certain inefficiency in our current implementation of
IC3-INN. One can check that there are significantly more
innards in the selected test-cases (and in HWMCC test-
cases in general) as compared to IBM-AOD-SEC designs.
The procedure InductivelyGeneralize starts taking a
significant portion of the overall runtime, which negatively

https://github.com/agurfinkel/innard-benchmarks
https://github.com/agurfinkel/innard-benchmarks
https://github.com/agurfinkel/innard-benchmarks


TABLE II
SELECTED DESIGNS FROM HWMCC’20

Benchmark #gates #innards IC3 time IC3-INN time

rast-p16 3 019 332 timed-out 2
zipversa...prf-p10 1 688 694 timed-out 282
h RCU 920 442 3 410 timed-out
dspfilters fastfir...p45 21 301 5 289 2 381 timed-out

affects performance of IC3 when the lemmas over innards do
not seem to help.

VI. RELATED AND FUTURE WORK

The technique presented in this paper can be viewed as
an extension of regular IC3 that simply learns an additional
lemma during inductive generalization. As such, it is reason-
ably easy to integrate it in an existing IC3 implementation.
The main technical point being replacing Init by Înit and Tr
by T̂r in IC3’s SAT queries. The key difference with other
inductive generalization schemes (see for instance [3]) is that
we are able to learn lemmas over both state variables and
internal nets, which, in some cases, may exponentially reduce
the size of the inductive invariant.

Backes and Riedel [7] also exploit internal nets in the
design. However, the two approaches are very different: [7]
uses input-free innards to generalize proof obligations (POBs),
while we use arbitrary innards to generalize lemmas. Addi-
tionally, [7] uses only input-free innards (and, in fact, only
the nets on the boundary between input-free and non input-
free parts of the netlist), while we use all internal nets.
Even more importantly, in our work the decision of which
innards to include in the lemma was based on the ability to
inductively generalize this lemma and not whether the innards
are “boundary” or not. Above notwithstanding, it is interesting
to combine the two approaches, i.e., to allow both proof-
obligations and lemmas over internal nets. It is also interesting
to more carefully integrate our approach with Quip [6]. Quip
uses negations of lemmas as proof obligations, which would
also introduce innards into POBs.

Another very interesting direction for further research is to
extend the approach to learn lemmas over signals that are not
present in the original netlist. Our framework allows such an
extension: by including additional logic into the netlist (that is,
creating additional innards), we would be able to learn lemmas
over this new logic (even if this new logic is not in the cone-
of-influence of the original problem!). This is closely related
to implicit predicate abstraction of Tonetta et al. [20] that is
used to lift propositional IC3 to SMT-based logics.

Finally, we believe that there is a lot of room
to improve the current implementation. Currently, when
there are many innards in the design, the procedure
InductivelyGeneralize may require a large number of
SAT queries, and, hence, may take a considerable portion of
the overall runtime. Possibly, one can find better heuristics
of which innards to consider (e.g., only to consider innards

with high logic level, or only to consider higher-priority
innards), or find more efficient procedures to perform inductive
generalization (e.g., instead of the top-down approach that
removes literals one can consider a bottom-up approach that
adds literals). In the worst-case, if learning additional lemmas
takes a considerable amount of time, but does not seem useful,
the technique can be simply turned off.

A further extension of our approach is to allow lemmas
to be arbitrary formulas, not restricted to clauses in CNF.
This is commonly done in SMT-based extensions of IC3 algo-
rithms. For example, Sally [21] uses arbitrary SMT-formulas
as lemmas, and Spacer [22] uses clauses over complex First
Order signature. However, these techniques are difficult to
port efficiently in the context of Hardware Model Checker
since they rely on dynamic cnfization that is common in SMT-
solvers but not in SAT-solvers.

VII. CONCLUSION

Currently, IC3 is unquestionably the most effective tech-
nique for formal symbolic model checking. It has received a
lot of research attention, and has been extended in variety of
ways including better inductive generalization, better lemma
management, and search direction. However, one significant
hidden limitation remains – IC3 is limited to learning inductive
invariants in CNF over the latches (i.e., state variables) of
the design. Therefore, IC3 cannot be effective for any design
whose invariant has no concise CNF representation. No im-
provements in core IC3 parts can solve this problem.

In this paper, we propose to address this limitation by
extending IC3 to learn lemmas not only over latches, but
also over internal signals, that we call innards. We show
learning lemmas over innards is a natural generalization of
inductive generalization. Instead of simply dropping literals
to strengthen the lemma, we propose to replace literals by
internal signals that are forced by them. We also propose sev-
eral improvements to a naive strategy that lead to significantly
improved performance.

Our work is motivated by a specialized set of Sequen-
tial Equivalence Checking (SEC) benchmarks at IBM. These
benchmarks have been traditionally difficult for IC3, but not
for Interpolation (IMC). However, the performance of inter-
polation was not stable – being affected by small changes in
the verification flow. Our new implementation excels on these
benchmarks and leads to an order of magnitude improvement
in performance.

Unfortunately, similar performance gains do not manifest
on the publicly available HWMCC benchmarks that are the
de-facto metric for academic model checking research. We
believe this shows deficiency in the currently available bench-
marks. Techniques that might be effective in industry might
be missed by researchers since they do not perform well on
these benchmarks. To remedy this, we identified some publicly
available benchmarks, and created new benchmarks based on
SEC flow, that illustrate the advantage of our technique. We
hope this can stimulate further research and improvements to
IC3.



In the current work, we assume that the design is fixed, and
use internal signals that are already available. We think that
this opens an interesting direction by allowing IC3 to change
the design by synthesizing new innards that are useful for
a current verification run. This brings IC3 and interpolation
much closely together, and also paves way for bringing al-
gorithms from hardware verification to software verification,
and/or to word level.
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