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Abstract—Industrial hardware verification tasks often require
checking a large number of properties within a testbench.
Verification tools often utilize parallelism in their solving or-
chestration to improve scalability, either in portfolio mode where
different solver strategies run concurrently, or in partitioning
mode where disjoint property subsets are verified independently.
While most tools focus solely upon reducing end-to-end wall-
time, reducing overall CPU-time is a comparably-important
goal influencing power consumption, competition for available
machines, and IT costs. Portfolio approaches often degrade into
highly-redundant work across processes, where similar strategies
address properties in nearly-identical order. Partitioning should
take property affinity into account, atomically verifying high-
affinity properties to minimize redundant work of applying
identical strategies on individual properties with nearly-identical
logic cones. In this paper, we improve multi-property parallel
verification with respect to both wall- and CPU-time. We extend
affinity-based partitioning to guarantee complete utilization of
available processes, with provable partition quality. We propose
methods to minimize redundant computation, and dynamically
optimize work distribution. We deploy our techniques in a
sequential redundancy removal framework, using localization to
solve non-inductive properties. Our techniques offer a median
2.4× speedup yielding 18.1% more property solves, as demon-
strated by extensive experiments.

I. INTRODUCTION

Practical hardware and software verification often mandates
checking a large number of properties on a given design. For
example, functional verification involves checking a suite of
low-level assertions and higher-level encompassing properties.
Equivalence checking compares pairwise equality of each out-
put across two designs, yielding a distinct property per output.
Redundancy removal requires proving many gate-equalities
throughout a design, each comprising a distinct property.
Redundancy removal is the core procedure of equivalence
checking, and is widely-used to boost verification scalability.

Each property has a distinct minimal cone of influence
(COI), or fan-in logic of the signals referenced in the prop-
erty. Verification of a group of properties requires resources
proportional to the collective COI size, which is often ex-
ponential (after lighter logic reductions). Each property adds
distinct logic to the group’s collective COI; affinity refers
to the degree of common vs. distinct logic in the COI.
Atomic verification1 of a group of low-affinity properties is

1Atomic verification refers to running a set of single-process verification
engines (called a strategy) on a group of properties. Serial verification refers
to beginning one atomic task after another finishes, using a single process.
Concurrent or parallel verification refers to dispatching multiple atomic tasks
on concurrently-running parallel processes.

Fig. 1. Parallel verification: property partitioning vs. strategy exploration.

thus often significantly slower than solving them one-at-a-
time. Conversely, atomic verification of a high-affinity group
saves considerable verification resource, as the effort expended
for one property can benefit the others without significantly
slowing them down [1, 2]. Parallel verification resource can be
optimized to leverage these facts using affinity-based property
partitioning [3], where each parallel process, or worker, runs
the same strategy on a different property group.

An alternate way to accelerate verification is by using
a parallel portfolio (strategy exploration), where the same
property group is concurrently verified using a different
strategy per worker, as depicted in Fig. 1. However, port-
folio approaches often degrade into highly-redundant work
across processes, where similar algorithms address properties
in nearly-identical order. Existing tools often independently
use these modes in different contexts, particularly strategy
exploration first running qualitatively-different strategies in
available workers (e.g., BMC, IC3, interpolation) then padding
differently-configured identical strategies in the remaining
processes (e.g., IC3 with different heuristics). The latter yields
increasingly-redundant CPU-time for diminishing gains in
wall-time. These modes need not be mutually-exclusive: a
strategy could partition within a worker, and partitioning could
use different strategies for different groups. We explore the
mutual optimization between property partitioning and strategy
exploration, addressing the following challenges:
Property partitioning →
P1 Some workers are not utilized if the number of high-
affinity groups is less than available workers.
P2 Some workers finish their tasks and idle (no more parti-
tions to dispatch) while others degrade wall-time solving large
or difficult groups, or run on slower machines.
Strategy exploration →
P3 Nearly-identical strategies verify the same properties con-
currently yielding redundant computation; two or more work-
ers would solve the same property at nearly the same time.
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P4 A worker gets stuck on the first difficult property inhibiting
progress; easy properties go unexplored.
P5 When using a round-robin resource-constrained approach
to avoid P4, a worker fails to solve a difficult property in the
allocated time even after several repetitions.

Contributions: We optimize parallel verification using com-
plementary property partitioning and strategy exploration, in
terms of both wall- and CPU-time. (1) We present a scalable
property partitioning algorithm (Sect. III-A), extending [3]
to guarantee complete utilization of available processes with
provable partition quality. (2) We propose parallel schedul-
ing improvements (Sect. III-B), such as resource-constrained
irredundant group iteration, incremental repetition, and group
decomposition to dynamically cope with more-difficult groups
or slower workers. (3) We address irredundant strategy explo-
ration of a localization portfolio in a sequential redundancy
removal framework (Sect. IV), which we have found to be the
most-scalable strategy to prove non-inductive redundancies.
(4) We additionally propose improvements to semantic group
partitioning within localization (Sect. IV-C). To our knowl-
edge, this is the first published approach to mutually-optimize
property partitioning and strategy exploration within a multi-
property localization portfolio.

A. Related Work

Despite the prevalence of parallel verification tools and
multi-property testbenches, little research has addressed mu-
tual optimization of parallel partitioning and strategy explo-
ration. Furthermore, most approaches optimize wall-time alone
without considering CPU-time, treating additional CPUs as
free horsepower to fill with slightly-modified strategies without
attempting to minimize redundant computation.

Methods to group properties based on COI similarity are
either computationally-prohibitive [1, 2, 4], or do not optimally
utilize available parallel processes [3]. They may generate
fewer groups than processes, or lose affinity guarantees when
requiring number of groups as an algorithmic parameter.

Much prior work addresses ways to parallelize specific
algorithms in a single-property context [5]–[7]. Other work
incrementally reuses information between properties to accel-
erate specific algorithms [8]–[11]. These are complementary
to our work, and can be used as strategies therein.

Much complementary research has addressed sequential
redundancy removal, using scalability-boosting strategies in-
cluding induction [12]–[14], simulation [15, 16], and syn-
ergistic transformation and verification algorithms [16, 17].
The benefit of parallelizing inductively-provable redundancies
has been noted in [18, 19], though little work addresses
parallelizing non-inductive redundancies. Localization is a
powerful scalability boost to redundancy removal [14, 16, 20]
and property checking [21]–[24]. Prior work is focused mostly
upon single-property single-process contexts [21]–[24], or
solely upon parallel property partitioning [3]. This work is
complementary to ours: we extend state-of-the-art solutions
for both, to mutually-optimized parallel verification.

II. PRELIMINARIES

The design under verification is represented as a netlist
N , which is a tuple 〈〈V,E〉, F 〉 where 〈V,E〉 is a di-
rected graph with vertices V representing gates, and edges
E ⊆ V × V representing interconnections between gates.
Function F : V → types assigns vertices to gate types: con-
stants, primary inputs, combinational logic such as AND gates,
and sequential logic such as registers. A state is a valuation
to the registers. Certain gates are labeled as properties. The
fan-in (fan-out) of gate u is the set of gates which may be
reached by traversing edges backward (forward) from u. The
fan-in of property p is called the cone of influence (COI) of p.
Registers and inputs in the COI are called support variables.
The number of support variables in the COI is its size. A
strongly connected component (SCC) is a set of interconnected
gates such that there is a non-empty directed path between
every pair of gates in the same SCC. A merge of gate u onto
gate v consists of moving the output edges of u onto v, then
eliminating u from the netlist by treating u as a rename for v.

A. Affinity Analysis

Property grouping algorithms represent support variable
information as a Boolean bitvector per property [25]. Every
support variable in the netlist is indexed to a unique position
in the bitvector, set to “1” if and only if the support variable
is in the COI of the property. The length of such a bitvector
is equal to the total number of support variables in the netlist,
and all bitvectors have the same length. The COI size of the
property is the number of bits set to “1”. These bitvectors may
be compared to determine relative property affinity. Properties
p1, p2 with bitvectors bv1, bv2 respectively have

0 ≤ affinity(p1, p2) = 1− hamming(bv1, bv2)
length(bv1)

≤ 1.0

where hamming(bv1, bv2) is the Hamming distance between
bv1 and bv2, and length(bv1) is the number of support variables
in the netlist [3]. The distance between p1, p2 equals the
Hamming distance between their bitvectors, i.e., dist(p1, p2) =
hamming(bv1, bv2). A group g is a set of properties, with a
single property g∗ therein representing its center. The quality
Q(g) of a group is the minimum affinity between any property
in g vs. its center g∗:

Q(g) = min({affinity(p, g∗) | ∀p ∈ g})
It is desirable that property partitioning algorithms guarantee
group quality to be greater than a specifiable threshold.

B. High-Affinity Property Grouping

Three-leveled grouping [3] (Fig. 2) utilizes support bitvec-
tors of properties to generate high-affinity groups. The algo-
rithm takes the desired grouping level (l) and affinity threshold
(t). It groups properties based upon: a) Level-1: identical
bitvectors (identical support variables); b) Level-2: common
large SCCs (containing t% netlist support variables) in the
COI; and c) Level-3: small Hamming distance between support
bitvectors, scalably identified by equivalence-classing mapped



structural grouping (Properties P , Netlist N , Level l, Affinity t)
1: Groups G = P # each property in singleton group
2: if l ≥ 1 : grouping level 1 (G, N ) # identical COI

3: if l ≥ 2 : grouping level 2 (G, N , t) # large SCCs in COI

4: if l ≥ 3 : grouping level 3 (G, N , t) # Hamming distance

5: return G # return high-affinity groups

Fig. 2. Algorithm to group properties based on structural affinity [3].

bitvectors using threshold-aware mapping functions. Higher
levels yield progressively fewer but larger groups.

Straightforward grouping approaches such as pairwise com-
parison are computationally prohibitive [25], requiring at
least quadratic resource with respect to number of proper-
ties. Despite being conceptually a quadratic-resource algo-
rithm, bitvector equivalence-classing [3] consumes near-linear
runtime and memory in practice, enabling scalable online
partitioning with provable quality bounds [3]. Bitvectors are
computed during a linear sweep of the netlist, and have size
proportional to the number of SCCs plus non-SCC support
variables. SCC computation has linear runtime [26]. With
efficient implementation, this entire process consumes a few
seconds on netlists with millions of support variables and
properties: e.g. computing bitvectors in topological netlist
order, and garbage-collecting bitvectors as soon as all fanout
references have been processed [25].

A priori knowledge of solvers may dictate the ideal grouping
level. For example, BDD-based reachability is highly sensitive
to COI size, and thus may prefer level=1. BMC may prefer
level=3 with lower affinity. Localization may prefer level=1,
=2, or =3 depending on subsequent solvers. In many contexts,
the caller can set level=3 and allow Fig. 2 to determine
group count and size, especially when using the techniques
of Sect. III-B and Sect. IV-C to decompose difficult groups.

Theorem 1 ([3]). Level-1 grouping generates property groups
G such that ∀g ∈ G : Q(g) = 1.0.

Theorem 2 ([3]). Given affinity t, level-2 grouping generates
property groups G such that ∀g ∈ G : Q(g) ≥ t.

Theorem 3 ([3]). Given affinity t, level-3 grouping generates
property groups G such that ∀g ∈ G : Q(g) ≥ 3 ∗ t− 2.

Note that desired number of property groups is not an al-
gorithmic parameter; affinity analysis determines the optimal
number of groups respecting configurable quality bounds. For
more details on leveled grouping, we refer the reader to [3].

III. GROUPING FOR PARALLEL VERIFICATION

Many organizations have large clusters of computers for
load-balancing of tasks such as verification. The maximum
number of available workers for a given task (n) is often
known, e.g. the maximum number of organizational job sub-
missions allowed per user, minus how many that user wishes
to reserve for other tasks. Existing scalable grouping algo-
rithms [3] may generate fewer high-affinity groups than n (P1).
While partitioning a high-affinity group may yield redundant

structural grouping parallel (Properties P , Netlist N , Level l,
Affinity t, Workers n)

1: Level lc = 0 # current grouping level
2: Groups G = singletons(P ) # initialize to singleton groups
3: if |G| ≤ n : return G # fewer properties than workers

4: if l ≥ 1 : grouping level 1 (G, N ), lc = 1 # identical COI

5: if l ≥ 2 and |G| ≥ n : # else fewer groups than workers
6: grouping level 2 (G, N , t), lc = 2 # large SCCs in COI

7: if l ≥ 3 and |G| ≥ n : # else fewer groups than workers
8: grouping level 3 (G, N , t), lc = 3 # Hamming distance

9: if |G| < n : # fewer groups than available workers
10: rebalance (G, N , lc, t, n) # distribute groups, see Fig. 4

11: assert ( |G| ≥ n) # guaranteed to hold
12: return G # return high-affinity groups

Fig. 3. Property grouping guaranteed to generate at least min(n, |P |) high-
affinity groups for n parallel workers.

rebalance (Groups G, Netlist N , Level lc, Affinity t, Workers n)
1: if lc == 1 : # divide large level-1 groups in half
2: halve groups (G, n) # see Fig. 5
3: else # rollback minimal-quality level-2 & level-3 groups
4: rollback groups (G, N , lc, t, n) # see Fig. 6

Fig. 4. Algorithm to subdivide high-affinity groups for n workers.

CPU-time (similar effort expended on nearly-identical COIs),
it may benefit wall-time due to disparate difficulty of properties
therein: e.g. one may be inductive, and another require deep
sequential analysis. Traditional clustering algorithms can be
configured to produce ≥ n groups, though are computationally
prohibitive for online use and may not yield affinity guarantees
if n does not align with the given netlist.

A. Property Grouping Algorithm

Fig. 3 shows our extension to leveled grouping [3] (Fig. 2),
guaranteeing generation of at least min(n, |P |) provable-
affinity groups. Each property is returned as a singleton if there
are fewer than n properties. Otherwise, grouping is performed
in three levels that iteratively generate fewer, larger groups.
Later levels are skipped if the number of generated groups
becomes less than n at any level. The algorithm then rebal-
ances as needed by fine-grained affinity analysis: subdividing
large or lower-affinity groups to generate at least min(n, |P |)
property groups. As discussed in Sect. III-B, this procedure is
beneficial even after initial partitioning to subdivide a difficult
group into provably high-affinity subgroups.

The rebalancing algorithm is shown in Fig. 4. It subdivides
groups based on the grouping level lc that generated fewer
groups than n. For level-1, quality is already 100% so division
is based on number of properties in the group (Fig. 5). Groups
with the most properties are halved until at least min(n, |P |)
groups are generated. Finer-grained analysis may be integrated
if desired, e.g. considering affinity of combinational gates in
the combinational fan-in of these properties. Group rollback
for higher levels is more intricate (Fig. 6), with the goal of
improving group quality. A group with minimal quality is
conservatively subdivided until at least min(n, |P |) groups are
generated. A minimal-quality group is split to yield smaller,



halve groups (Groups G, Workers n)
1: while |G| < n :
2: Group g = pick largest non-singleton group from G
3: G = (G \ g) ∪ halve group (g) # see below

halve group (Group g)
1: return {first half of g, second half of g} # split in half

Fig. 5. Algorithm for subdividing large level-1 groups in half.

rollback groups (Groups G, Netlist N , Level lc, Affinity t, Workers n)
1: while |G| < n :
2: Group g = pick minimal-quality non-singleton group from G
3: G = (G \ g) ∪ rollback group (g, N , lc, t) # see below

rollback group(Group g, Netlist N , Level lc, Affinity t)
1: Groups G = singletons(g) # split g to singletons
2: grouping level 1 (G, N ) # level-1
3: if |G| == 1 : G = halve group (g ∈ G) return G # |G|== 2
4: else if |G| == 2 : return G # g had two 100% quality subgroups

5: rollback group level (G, N , t, 2) # level-2
6: if |G| == 2 : return G
7: if lc == 3 : rollback group level (G, N , t, 3) # level-3

8: return G # |G|== 2

rollback group level (Groups G, Netlist N , Affinity t, Level l)
1: Groups Gc = G # local copy of G
2: Group g0, g1 = ∅ # temporary groups, initially empty
3: if l == 2 : grouping level 2 (Gc, N , t) # level-2
4: else : grouping level 3 (Gc, N , t) # level-3

5: if |Gc| == 1 : # Gc is one group containing all properties in G
6: g0 = g ∈ G containing center property g∗c
7: # extract most-distant property into distinct subgroup
8: g1 = g ∈ G s.t. dist(g∗0 , g∗) == max({dist(g∗0 , g∗i ) | ∀gi ∈ G})
9: for each group g ∈ G : # merge groups to minimize distance

10: if dist(g∗0 , g∗) ≤ dist(g∗1 , g∗) : add properties in g to g0
11: else : add properties in g to g1

12: G = {g0, g1} # note Q(g0), Q(g1) ≥ Q(gc), see Thm. 4
13: else : G = Gc # |G| ≥ 2

Fig. 6. Algorithm for subdividing minimal-quality groups.

higher-quality subgroups. This process has negligible runtime,
reuses precomputed support bitvectors and requires only a few
milliseconds on the largest netlists.

The rebalancing procedure generates groups with quality
bounds per Theorems 1, 2 and 3. Note that arbitrarily subdi-
viding level-2,-3 groups without careful affinity consideration
might violate affinity thresholds, because the quality of group
g is measured with respect to its center property g∗. Assume
that we generate subgroups g0 and g1 from g. If g∗ is in g0, we
trivially have Q(g∗0) ≥ Q(g∗) for any properties subgrouped
with g∗. However, no such claim can be made about g1; its
properties might have been nearer to g∗ than to each other.
It is thus desirable to subdivide the most-distant property g∗1
from g∗ to improve vs. risk degrading the resulting quality
of both subgroups. Moreover, simply rolling back a higher
level group to lower-level subgroups risks generating more
groups than necessary, e.g., one level-2 group rolled back
to ten level-1 groups. The algorithm in Fig. 3 generates a
minimal number |G| of high-affinity groups with provable
affinity bounds, where |G| ≥ min(n, |P |).
Theorem 4. Given a group g, the rollback group procedure

subdivides g into two disjoint subgroups g0 and g1 such that
Q(g0) ≥ Q(g) and Q(g1) ≥ Q(g).

Proof. (Sketch) The algorithm returns two 100% affinity
groups when properties in g generate at most two level-1
subgroups. Otherwise, the greatest-Hamming-distance prop-
erty g∗1 ∈ g from g’s center property g∗ is identified. Subgroup
g0 inherits g∗ as its center, and g1 inherits g∗1 as its center.
Remaining properties in g are added to g0 vs. g1 to minimize
distance from g∗0 vs. g∗1 , ensuring provable quality bounds.

Corollary 4.1. Given affinity t and level l, grouping for
parallelism (Fig. 3) generates groups G such that ∀g ∈ G:
a) Q(g) = 1.0 if l = 1, b) Q(g) ≥ t if l = 2, and
c) Q(g) ≥ 3 ∗ t− 2 if l = 3.

Proof. The proof follows per Theorems 1, 2 and 3 when no
rebalancing occurs. Otherwise, rebalancing divides group g in
to smaller groups based on: (i) l = 1, level-1 subgroups are
generated and Q(g) = 1.0 per Theorem 1; (ii) l = 2, levels-1
or 2 subgroups are generated and Q(g) ≥ t per Theorems 2
and 4; and (iii) l = 3, levels-1, 2 or 3 subgroups are generated
and Q(g) ≥ 3 ∗ t− 2 per Theorems 3 and 4.

Theorem 5. Given groups G over a set of properties P , and
workers n with |G| < n and |P | ≥ n, rebalancing generates
property groups G′ such that

∣∣G′∣∣ = n.

Proof. Both halve group and rollback group subdivide a non-
singleton group g into exactly two subgroups, and iterate until∣∣G′∣∣ ≥ n. Therefore, the number of groups increases by exactly
one in every iteration, unless all groups become singleton
which cannot happen until

∣∣G′∣∣ = |P | ≥ n.

Corollary 5.1. Given a set of properties P and n workers,
grouping for parallelism (Fig. 3) generates groups G from P
such that |G| ≥ min(n, |P |).
Proof. The proof trivially holds when ≥n groups or |P | ≤ n
singletons are generated without rebalancing. Otherwise, the
proof holds per Theorem 5 when rebalancing occurs.

B. Group Distribution Heuristics

We propose three heuristics to optimally utilize parallel
workers, used on-the-fly by a manager that dispatches property
groups and dynamically adjusts based upon worker feedback.
When partitioning is supported by an engine within a strategy
(e.g. a localization engine [3]), there might be multiple man-
agers partitioning an identical or overlapping set of properties.
It is sometimes beneficial to use a hierarchy of managers:
the root might use lower-affinity partitioning onto parallel
strategies, with higher-affinity partitioning within a strategy.

Iteration order (I): Fig. 3 orders groups deterministically,
and thus distributed managers within a strategy will likely
verify common properties in the same order. This results
in redundant CPU-time, where two or more strategies may
solve the same property at nearly the same time (P3). The
root manager could instead dispatch disjoint properties to
different workers, though there are motivations for building



get next group (Groups G, Netlist N , Level lc, Affinity t)
1: Group g = pick unsolved or inactive group from G
2: if g == null : return null # all group are solved or active

3: if unsolved(g) and inactive(g) : return g # dispatch group

4: if unsolved(g) : # decompose (new groups are unsolved and inactive)
5: if lc == 1 : G = (G \ g) ∪ halve group(g) # see Fig. 5
6: else G = (G \ g) ∪ rollback group(g,N, lc, t) # see Fig. 6

7: else remove g from G # group is already solved

8: goto 1 # pick next group to dispatch

Fig. 7. Manager routine to dispatch unsolved groups using decomposition.

intelligence into distributed managers working on the entire
property set, such as enabling incrementality and data sharing
across properties [8]–[11]. To minimize redundant work, the
manager may be augmented with options to iterate common
groups in different orders: 1) smallest to largest COI (forward);
2) largest to smallest COI (backward); and 3) random to
heuristically minimize concurrent solving of the same group
while more groups than workers remain unsolved. If all
properties are of comparable difficulty, running two identical
strategies with opposite group ordering effectively halves wall-
time with almost no redundant CPU-time. This approach can
yield superlinear irredundant speedup when different strategies
are tailored for easier vs more-difficult properties: a lighter
strategy can iterate forward heuristically addressing easier
properties first (the heavier strategy would be slower for these),
while the heavier strategy can iterate backward addressing
more-difficult properties first (the lighter strategy might be
unable to solve these).

Controlled repetition (R): Each worker solves groups one-at-
a-time. Encountering a difficult group inhibits overall progress
(P4). Easier groups might follow, which when solved might
speed-up incremental verification of the previous difficult
group. Furthermore, solving easy properties sooner benefits
other workers, allowing them to focus on fewer difficult
groups. It is thus beneficial to impose time-limits per group
within certain fast strategies. The manager must be capable of
pruning already-solved properties (possibly solved by different
workers), and repeating groups up to a configurable maximum
allowed repetitions (to reduce redundant CPU-time). It may
be beneficial to increase resource limits between repetitions,
possibly after n repetitions with no progress. Engine incre-
mentality is fairly important when imposing time-limits and
repetition, to minimize redundant CPU-time.

Decomposition (D): Some groups are more difficult than
others, either because they are large (e.g., many properties), or
because individual properties therein are more difficult (e.g.,
having a very-deep counterexample). Some workers might be
slower than others, possibly due to varying machine load. A
common wall-time degradation occurs when fewer difficult
groups than workers remain, and previously-active workers
become idle (P2). This heuristic decomposes unsolved groups
and dispatches them to idle workers, to accelerate conver-
gence despite imposing some redundant CPU-time. Rather
than redundantly dispatching an entire unsolved group, this

Fig. 8. Sequential equivalence checking uses redundancy removal to eliminate
gate-equivalences between two logic designs. Each speculated gate-equality
requires verifying a property called a miter (depicted as green box =?).

heuristic utilizes the algorithms of Fig. 5 and Fig. 6 to sub-
divide unsolved groups to smaller and higher-affinity groups,
eventually becoming singletons. Smaller groups are easier for
idle workers to redundantly solve (P5), benefiting but not
preempting active workers (which might be on the verge
of solves). The corresponding manager with decomposition
is shown in Fig. 7. A group is inactive when no worker
is currently verifying it. Solved properties and groups are
discarded; groups with unsolved properties are subdivided and
redundantly dispatched. Singleton groups are not redundantly
dispatched, being inactive after the first dispatch.

IV. LOCALIZATION FOR REDUNDANCY REMOVAL

Industrial hardware designs are often rife with redundancy,
e.g. to boost the performance of semiconductor devices,
and to implement features such as error resilience, security,
initialization logic and post-silicon observability. Verification
testbenches yield additional netlist redundancies, due to input
constraints restricting the set of stimulus applied to the design,
and due to redundancies arising between the design and
synthesized properties. Equivalence checking can be viewed
as verifying a composite netlist comprising two designs as per
Fig. 8. Sequential redundancy removal [12]–[14, 16]–[18, 27]
(Fig. 9) is the process of proving that equivalence-classes of
gates evaluate to equal or opposite values in all reachable
states; each speculated redundancy entails solving a property
called a miter. When a miter is proven, the corresponding
redundant gates can be merged. This COI reduction is highly
beneficial to verification scalability, and is the core procedure
of sequential equivalence checking (SEC).

Various heuristics control the scope of equivalence-class
candidates affecting runtime vs. reduction (Fig. 9 Step 1): e.g.
whether to consider only registers vs. all gate types; whether to
prune classes to reflect corresponded signal names or require
per-class candidates spanning both designs in an equivalence-
checking context (Fig. 8) [14, 20]. A speculatively-reduced
netlist (Steps 2-3) accelerates verification of the miters. Tech-
niques such as BMC and guided simulation are typically used
to falsify miters; then induction proves the easier miters; and
finally multi-engine strategies prove the difficult miters or find
difficult counterexamples (Steps 4,5). Failed proofs (falsified
miters or inconclusive results) cause a refinement of the equiv-
alence classes to separate unproven miters’ gates, then another
expensive proof iteration is performed. Our goal is to minimize
inconclusive proofs to achieve maximum netlist reduction with



redundancy removal (Netlist N )
1: Guess the redundancy candidates - sets of equivalence classes of gates

in N , where gate u in class Q(u) is suspected equivalent to every other
gate v in the same equivalence class.

2: Select a representative gate R(Q(u)) from each class Q(u).
3: Construct the speculatively-reduced netlist by replacing source gate u

of every edge (u, v) ∈ E by R(Q(u)). Additionally, for each gate v,
add a miter property asserted when v 6≡ R(q(v)).

4: Attempt to prove that each miter is unassertable.
5: If a miter cannot be proven unassertable, refine the equivalence classes

to separate the corresponding gates, and goto Step 2.
6: For all unassertable miters, merge the corresponding gates onto the

representative to eliminate redundancy.

Fig. 9. Generic sequential redundancy removal framework [16].

minimal wall- and CPU-time, using a parallel localization
portfolio. Note that even if a testbench has only a single prop-
erty, redundancy removal will often create thousands of miters.
The large number of miters often tremendously benefit from
parallel processing, as noted for combinational redundancy
removal [19] and induction [18]. These miters are distributed
throughout the netlist, making affinity partitioning particularly
beneficial. Since practical netlists comprise a diversity of logic,
different miters benefit from different strategies.

The proof or counterexample of a property often only de-
pends on a small subset of logic in its COI. Localization [21]–
[24] is a powerful abstraction method to reduce COI size
by replacing irrelevant gates by cutpoints or unconstrained
primary inputs. Since cutpoints can simulate the behavior
of the original gates and more, the abstracted netlist over-
approximates the behavior of the original netlist: abstract
proofs imply original proofs, but abstract counterexamples
might be spurious. Abstraction refinement eliminates cut-
points deemed responsible for spurious counterexamples, re-
introducing previously-eliminated logic. It is desirable that
the abstract netlist be as small as possible to enable scalable
verification, while being immune to spurious counterexamples.

Localization is often essential to solve non-inductive miters,
leveraging speculative reduction to abstract nearly all logic
except for differently-implemented yet functionally-equivalent
logic between speculated equivalences [14, 16]. Without lo-
calization, the COI of a miter may be very large despite spec-
ulative reduction. This large COI size may choke even fairly-
scalable provers such as IC3. While the benefits of localization
for sequential redundancy removal are well-known [17], prior
work considered only single-process miter verification, aside
from use of a standard parallel model-checking portfolio to
solve miters [20]. Ours is the first to optimize a parallel
localization portfolio in this (or any multi-property) context,
using property partitioning and irredundant scheduling proce-
dures (Figs. 3 and 7), along with the following complementary
strategies tailored for easier vs. difficult properties. Note that
substrategies in either may be employed by the other.

A. Fast-and-Lossy Localization

Fast-and-Lossy localization (Fig. 10) attempts to quickly
discharge easier property groups, using timeouts to skip diffi-

fast lossy localization (Group g, unsigned n, Timeout T )
1: Netlist L = load incremental abstraction(g) # initially empty
2: unsigned k = load incremental bmc depth(g) # initially 0
3: while elapsed time() ≤ T and unsolved(g) :
4: localize bmc (g, L, k, unchanged) # see below

# check if netlist unchanged for last n bmc steps
5: if unchanged < n : k = k + 1, goto 4 # increment depth

6: run proof strategy(L, g, T - elapsed time())
7: save incremental data (G, k, L) # timeout: save incremental data

localize bmc (Group g, Netlist L, unsigned k, unsigned unchanged)
1: bool stop = 0 # some properties fail at depth k
2: while not stop : # loop until all properties pass at depth k
3: Gates c = {}, stop = 1 # cutpoints to refine, initially empty
4: for each Property p ∈ g :
5: Result r = run bmc(L, p, k) # run bmc with depth k
6: if r == unsat : continue # property passes

7: if cex not spurious : report solved(p, cex), continue
8: stop = 0 # property fails
9: Gates d = cutpoints to refine(), c = c ∪ d

10: if not stop : refine abstraction(L, c), unchanged = 0
11: else unchanged + = 1 # no change in abstraction

Fig. 10. Fast-and-Lossy localization with incremental repetition of high-
affinity property groups.

cult groups. If the group is not solved within the allotted time,
verification data (e.g., the current abstract netlist and achieved
BMC depth) is saved for incremental reuse to accelerate later
repetition. Skipped groups can be repeated as-is, or rebalanced
(Fig. 7) after several repetitions of no progress. Note that
repeating a group as-is may likely proceed further upon repe-
tition, by incrementally skipping earlier processing and since
a different worker might have solved some properties therein.
Fast-and-Lossy localization uses counterexample-based refine-
ment sometimes with quick proof-based abstraction (PBA),
possibly yielding larger abstract netlists that are more-difficult
to prove but with less time expended in BMC itself [23] for
faster performance on easier groups. When ready to prove (i.e.,
no refinements occur for n consecutive BMC steps), abstracted
groups are passed to a sequence of lighter reduction engines
then IC3 [5, 28]) under a modest time-limit (e.g. ≤ 300s)
which can be increased across repetitions (R).

B. Aggressive Localization

Aggressive localization (Fig. 11) is aimed at solving difficult
properties, where Fast-and-Lossy may fail due to larger-than-
necessary abstractions, insufficient reductions prior to IC3, or
small group time-limits. Aggressive never repeats groups, so
either imposes no time limit whatsoever, or a large time-limit
as shown applied to semantically-partitioned (Sec. IV-C) sub-
groups but iterated and increased until the group is solved.
Aggressive typically uses a hybrid of counterexample-based
refinement and PBA run after every unsatisfiable BMC result,
to yield smaller abstractions than the former alone to accelerate
subsequent proofs at the expense of more runtime spent in
BMC itself [23]. When ready to prove (i.e., no refinements
occur for n consecutive BMC steps), abstracted groups are
passed to a sequence of heavy reduction engines (including
nested induction-only sequential redundancy removal across



,
aggressive localization (Group g, unsigned n, bool pba, bool semantic,

Affinity t, Timeout T , Multiplier m)
1: Netlist L = initial abstraction(g) # initially empty
2: unsigned k = 0 # bmc depth
3: localize bmc (g, L, k, unchanged) # see Fig. 10
4: if semantic : collect support info (...) # see Sect. IV-C

5: if pba : minimize L using proof-based abstraction
# check if netlist unchanged for last n bmc steps

6: if unchanged < n : k = k + 1, goto 3 # increment depth

7: Groups Ĝ = semantic ? structural grouping (g, L, 3, t) : G
# Sort via (I) mode (Sect. III-B): forward, backward, or random

8: Sort Ĝ by abstract COI size
9: for each unsolved group ĝ ∈ Ĝ :

10: while elapsed time() ≤ T and unsolved(ĝ) :
11: run proof strategy(L, ĝ, T - elapsed time())
12: if unsolved groups remain : T = T ×m, goto 9

Fig. 11. Aggressive localization with semantic partitioning, counterexample-
and proof-based abstraction.

all gates, which might be too expensive to converge on large
netlists before localization) followed by IC3 [5, 28]).

C. Semantic Partitioning

Semantic partitioning [3] refers to re-partitioning a group
whose unabstracted COI was high-affinity, yielding sub-
groups of high affinity with respect to abstract COI as
correlates to subsequent verification complexity. Abstract COI
information is mined onto support bitvectors on a per-property
basis as cutpoints are refined (Fig. 11 Step 4), considering
minimized counterexamples for individual properties despite
incrementally using the same BMC instance for the entire
group. The group is partitioned into smaller, high-localized-
affinity subgroups (Step 7) before attempting to prove.

Improvements to semantic partitioning vs. [3]: Per-property
abstract-COI bloat may arise during counterexample analy-
sis, because the group must be mutually refined to be free
of spurious counterexamples. Eager partitioning (as soon as
any diverged abstract COI occurs) could circumvent this
ambiguous bloat, though often severely hurts performance
since intermediate abstract-COI differences often reconverge.
In practice, lazy partitioning deferred until modest BMC time
limits are exceeded is far superior (particularly since BMC
often benefits from level=3 lower affinity), retaining high-
affinity atomic verification benefits. Abstract-COI ambiguities
can be largely corrected during proof analysis, by analyzing a
distinct proof per property. Incremental data should be saved
when semantically re-partitioning, to minimize restart penalty.

Difficult sub-groups are susceptible to delaying easier later
sub-groups. Subgroups should be ordered as per (I) mode
(Sect. III-B): forward, backward, and random, configured
differently in parallel strategies for better portfolio perfor-
mance with less redundant CPU-time. Subgroups are verified
in the chosen order using controlled repetition (R) and large
Aggressive time-limits (Steps 9–11). We recommend T ≥ 1h
multiplying 2× at each iteration (Step 12) and overriding to
unlimited when a single sub-group remains.
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Fig. 12. Number of properties per benchmark set.

V. EXPERIMENTAL RESULTS

We evaluate our techniques within the post-induction
proof strategy of a sequential redundancy removal framework
(Fig. 9). To eliminate noise such as different counterexamples
yielding different equivalence-classes (Step 5), we snapshot
the speculatively-reduced netlist after ten minutes of induction,
before the final iteration of a six-hour eight-process semi-
formal bug-hunting [29] and localization portfolio to elim-
inate most incorrect and easier [27] miters. The following
experiments2 are run on these snapshotted netlists (pruning
those with fewer miters than processes), yielding three bench-
mark sets. Set B1 (Fig. 12a) are the most-difficult 291 of
1822 proprietary SEC benchmarks, where initial equivalence
classes comprise original properties and name corresponded
register pairs. Set B2 (Fig. 12b) has 269 netlists derived from
the former, including a large equivalence class for registers
without name correlation. Set B3 has 72 netlists from the
SINGLE property HWMCC 2017 benchmarks, comprising a
large initial equivalence class of all registers. Our techniques
are implemented within RuleBase: Sixthsense Edition [30].

A. Localization Portfolio

We select our localization portfolio (Table I) from extensive
evaluation of 36 single-process localization configurations and
30 subsequent proof strategies, exploring options such as
enabling vs. disabling PBA [23]; different levels of prop-
erty grouping vs. no grouping [3]; enabling vs. disabling
semantic partitioning (Sect. IV-C); and different policies for
group iteration (I), repetition (R), and decomposition (D)
(Sect. III-B). The best-performing collection is chosen, maxi-
mizing complementary unique solves. Aggressive localization
(Sect. IV-B) primarily uses both counterexample- and proof-
based abstraction, yielding smallest abstract netlists solved
with a single-process heavy strategy of combinational rewrit-
ing; input elimination [31]–[33] which is especially pow-
erful after localization due to inserted cutpoints; min-area
retiming [34]; a nested induction-only gate-based sequential
redundancy removal; then IC3. Fast-and-Lossy localization
(Sect. IV-A) uses counterexample-based refinement mainly
with no or lighter PBA for faster BMC, yielding larger
abstract netlists solved using light combinational rewriting,
input elimination, then IC3. The former is fastest for difficult
properties; the latter for easier properties.

We compare four 6-process localization portfolios derived
from Table I. The localization configuration and subsequent
solving strategy of each process is identical across portfolios,

2Detailed results available at http://temporallogic.org/research/FMCAD20

http://temporallogic.org/research/FMCAD20


TABLE I
SIX-PROCESS COMPLEMENTARY LOCALIZATION PORTFOLIO.

# Localization
Strategy

Grouping
Level Semantic Iteration

(I)
Repetition

(R)
Decomposition

(D)
S1 Fast-and-Lossy Level-1 7 Forward 3 7
S2 Fast-and-Lossy Level-1 7 Reverse 3 3
S3 Fast-and-Lossy Level-3 3 Forward 3 3
S4 Aggressive Level-1 7 Forward 7 -
S5 Aggressive Level-1 7 Reverse 7 -
S6 Aggressive Level-3 3 Forward 7 -

except for adherence to the illustrated scheduling differences
as discussed below. For greater portfolio value, each pro-
cess includes localization configuration differences beyond
the illustrated scheduling distinction in Table I. S1 only
performs counterexample-based refinement; S2 and S3 also
perform PBA. S2 vs. S3 perform hybrid counterexample-
based refinement with light PBA (modest time limit) after
every unsatisfiable BMC step vs. only before the subsequent
solving strategy, respectively. Abstract-netlist gates remaining
after PBA are considered committed and cannot be eliminated
in later PBA steps [21] in S2, but not S3. S3 utilizes a
minimal unsatisfiable core to further reduce the abstract netlist.
S4-S6 are identical to S1-S3, respectively, without imposed
time-limits and modulo the above-mentioned post-localization
solving strategy differences. To highlight our individual con-
tributions, we compare four variants of this portfolio:
1) base: No property grouping or incremental repetition of
properties; all processes iterate properties in forward order.
This represents a standard state-of-the-art localization portfolio
approach without property grouping, e.g., before [3].
2) base+g extends base with affinity property grouping,
including semantic partitioning in one Fast-and-Lossy and one
Aggressive strategy. This represents a state-of-the-art localiza-
tion portfolio with property grouping, e.g., as per [3] though
with our semantic refinement improvements of Sect. IV-C.
3) best-d extends base+g with incremental repetition (R)
and irredundant iteration order (I), to reduce CPU-time.
4) best extends best-d with decomposition (D).

Processes S1-S6 are generic online localization strategies.
Multi-property localization without affinity-partitioning gener-
ally yields poor/noncompetitive performance [3], eroding most
of its scalability benefit, especially for difficult miters. (Recall
that these benchmarks pre-filter easier miters, using induction
and semi-formal bug-hunting.) Therefore, base and base+g
are highly-competitive 6-process localization portfolios, for
online “first-run-of-a-testbench.” Industrial verification tools
may use more processes for large testbenches, and may post-
process data from prior/ongoing runs to accelerate future
results. This level of sophisticated benchmark-specific orches-
tration is valuable, though does not readily benefit “first-run-
of-a-testbench” and introduces noise in experiments hence are
not used herein. We optimize runtime of a generic 6-process
localization portfolio without per-benchmark customization.

B. Experiment Setup

Our experiments run on a computing grid with identical x86
Linux nodes. Each benchmark run uses a 6-process portfolio
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Fig. 13. #Properties solved vs. wall-time for B1 and B2; 6-hour time limit.
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Fig. 14. best vs. baselines for B1 (points below diagonal are in favor).

(Table I); each process S1-S6 runs on a single identical CPU
core on the same host-machine. Each process eagerly cancels
solved properties across all processes in that portfolio, to
reduce redundant computation.

While most prior research and competitions focus solely
upon optimizing wall-time, our techniques additionally benefit
CPU-time. Traditionally, Fast-and-Lossy (unlike Aggressive)
processes terminate early, leaving unsolved difficult properties.
In these experiments, base and base+g augment Fast-and-
Lossy processes to naively repeat identically-configured S1-S3
with identical resource limits per group (whereas best-d and
best add incremental-repetition (R) with resource-doubling
across repetitions), until all properties are solved or global
timeout. This naive repetition is wasteful in practice, yielding
highly-redundant CPU-time for marginal benefit. However,
disabling naive repetition in these experiments yielded 3.2%
fewer solves in base and base+g vs. best-d and best,
which arguably unfairly penalized them as state-of-the-art
solutions before our contributions. Therefore, S1-S6 in each
portfolio continue working until all processes terminate, hence
CPU-time is approximately 6× wall-time in these experiments.

C. Proprietary Benchmarks

Fig. 13 shows the number of properties solved vs. wall-
time for B1 and B2. best is the clear winner, solving 18.1%
(15.3%) more properties in 17.2% (22.9%) less time for
B1 (B2, respectively) compared to base. Affinity-grouping
significantly improves performance of base+g over base.
Level-3 grouping with our semantic partitioning improvements
(Sect. IV-C) benefits Aggressive, atomically solving proper-
ties in fewer, larger high-abstract-affinity groups compared
to level-1,-2. Incremental repetition and irredundant iteration
allows best-d to solve 8.1% more properties than base+g,
less-severely hindered by difficult groups. best yields addi-
tional solves through decomposition of difficult groups after
five incremental repetitions of no progress, solving all prop-
erties in 4 vs. 6 benchmarks in B1 vs. B2 that time out with
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TABLE II
UTILITY OF AGGRESSIVE STRATEGY PROCESSES IN A PORTFOLIO.

Portfolio Set B1 Set B2
#Solved Time (h) #Solved Time (h)

3× Fast-and-Lossy, 3× Aggressive 46,844 236 93,806 165
6× Fast-and-Lossy (modified best) 41,702 275 91,639 184
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Fig. 16. #Properties solved vs. wall-time for big: (a) by all portfolios; (b)
per process of Table I within best and best-d.

other portfolios. Fig. 14 details per-B1-benchmark runtimes of
best, yielding a median speedup of 2.4×, 2.0× and 1.5× vs.
base, base+g, and best-d, respectively.

Fig. 15 shows the distribution of properties solved per
process (Table I) within these portfolios. The percentage
solved by each Fast-and-Lossy (and Aggressive) process is
nearly uniform in best, showing near-optimal irredundant
work distribution. In contrast, without (I) and (R), base
and base+g have highly-uneven distributions due largely to
parallel processes addressing the same groups concurrently.
While the number of solved (easier) miters is considerably
larger with Fast-and-Lossy, we emphasize how critical the
Aggressive solution of difficult miters is to the overall re-
dundancy removal process. If any are left unsolved, Fig. 9
Step 5 will forgo attempting to merge the corresponding gates,
thereby weakening netlist reductions, risking unsolved SEC,
and hurting runtime by requiring yet another expensive proof
iteration with refined equivalence classes [14] – where fan-
out miters often become more-difficult than those unsolved
in prior iterations. Table II shows the number of properties
solved by best, and a modified best portfolio with all Fast-
and-Lossy strategy processes where S4-S6 are identical to S1-
S3 respectively, but without imposed time-limits and iterating
groups in opposite order. Without Aggressive processes in
the portfolio, modified best solves 10.9% (2.31%) fewer
properties in 16.5% (11.51%) more time for B1 (B2).

To further highlight the value of decomposition (D),
Fig. 16b illustrates an additional big benchmark containing
77728 properties partitioned into 9958 level-1 and level-2,
and 2991 level-3 high-affinity groups. Fig. 16a shows the

number of properties solved by each portfolio vs. time. best
is 3.0× faster than base. Fig. 16b shows the number of
properties solved by two Fast-and-Lossy processes of best
and best-d; decomposition enables S2 and S3 in best to
collectively solve 25.2% more properties than best-d.

D. HWMCC Benchmarks

0 50 100 150 200
Wall-time (hrs)

0

2

4

6

8

#
Pr

op
er

tie
s

(×
10

3 )

best

base

base+g

best-d

Fig. 17. #Solved vs. wall-time for B3.

Fig. 17 shows the number
of properties solved by each
portfolio for set B3. best
is again the winner, solving
3054 more properties in less
time than base. Incremen-
tal repetition and irredun-
dant iteration is particularly
beneficial in this set: several benchmarks have counterexam-
ples that are discovered in earlier group repetitions, enabling
Aggressive and later Fast-and-Lossy repetitions to direct re-
source upon more-difficult provable miters.

VI. CONCLUSIONS AND FUTURE WORK

We focus upon boosting the scalability of multi-property
parallel verification, with application to sequential redun-
dancy removal using a localization portfolio. Our contribu-
tions optimize both wall-time and CPU-time, orchestrating via
complementary strategy exploration and property partitioning.
(1) We extend scalable affinity-based property partitioning
to guarantee complete utilization of available processes with
provable partition affinities. (2) We propose improvements
to the scheduling of parallel processes, such as resource-
constrained irredundant iteration, incremental repetition, and
decomposition of difficult groups. (3) We deliver a carefully-
optimized localization portfolio, self-tailoring to irredundantly
address a range of property difficulties through a synergistic
balance of Fast-and-Lossy vs. Aggressive configurations. (4)
We propose improvements to semantic group partitioning
within localization, boosting scalability by enabling the BMC
within localization to benefit from larger and slightly-lower
affinity groups, then optimally sub-dividing those groups be-
fore solving the localized properties. To our knowledge, this
is the first published approach to optimize both property
partitioning and strategy exploration within a multi-property
localization portfolio. Experiments confirm that this solution
works well across large suites of benchmarks.

Note that our mutually-optimized partitioning vs. strategy-
exploration orchestration offers broad insights early in an
ongoing verification-tool run, whereas traditional orchestration
typically explores only easier (smaller-COI) properties or only
a subset of strategies early in the run. Exploring how this
insight may enable dynamic benchmark-specific customized
orchestration during an ongoing run is a promising future
direction, e.g. dynamically adjusting which strategy is used
per process and partition. Exploring these techniques across a
broader set of engines, and exploring incrementality of strate-
gies across localization and equivalence-class refinements, are
additional promising research directions.
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