.l.

Rohit Dureja*, Jason BaumgartnerJr, Alexander Ivrii’,

Robert Kanzelman?, Kristin Y. Rozier’

* Jowa State University

T IBM Corporation

fmcad??

October 23, 2019

Motivation

Model Checking

v g

ob::/'

=2
Property P . \®(Trace)
perty V
Verification Engine(s)

Usually multiple properties to be verified

Motivation

Model Checking

All properties
Model M
oO0™
—
Multiple —
Properties

Verification Engine(s)

Make multi-property verification scalable

Motivation

Multi-Property Verification

 Properties checked concurrently, or one-at-a-time

* Doesn’t optimally exploit sub-problem sharing

All properties
Model M
oo™
—
Multiple —
Properties

Verification Engine(s)

Opportunity to save verification resources!

Motivation

Improved Multi-Property Verification
* Group ‘high-affinity” properties; similarity metric

* Properties in a group are concurrently solved; parallel groups
* Engine effort reused across properties in a group

All properties

Grouped
Properties

Verification Engine(s)

What similarity metric to use?

Motivation

Similarity Measure

* Every property has distinct minimal cone-of-influence (COI)

* Multiple properties 2 exponential complexity w.r.t to collective COI
e Concurrent verification slower that one-at-a-time

* Nearly identical COI = save verification resource®
* Experimental demonstrated, offline-grouping

Structurally Similar

Inputs
A

Design

* G. Cabodi, P. E. Camurati, C. Loiacono, M. Palena, P. Pasini, D. Patti, and S. Quer, “To split or to group: from divide-and-conquer to sub- task sharing for 6
verifying multiple properties in model checking,” International Journal on Software Tools for Technology Transfer (STTT), vol. 20, no. 3, pp. 313-325, Jun 2018

Our Contributions

* Online procedure to partition properties into high-atfinity groups

* Near-linear runtime and automated; provable affinity bounds

Initial Grouping

Our Contributions

* Online procedure to partition properties into high-atfinity groups

* Near-linear runtime and automated; provable affinity bounds

* Property grouping based on cone-of-influence

* Structural information (static)

* Structurally-similar properties may have different semantics
* Subset of design logic in cone-of-influence

nital Grouping
Structural Affinity Grouping @3 PD

Our Contributions

Online procedure to partition properties into high-affinity groups

* Near-linear runtime and automated; provable affinity bounds

Property grouping based on cone-of-influence

* Structural information (static)

Structurally-similar properties may have different semantics
* Subset of design logic in cone-of-influence

Property-group refinement using localization abstraction

¢ Semantic information (dynamic)

Initial Grouping
Structural Affinity Grouping (P3 %)
Semantic Affinity Partitioning

Cone-of-Influence

Cone-of-Influence Computation

Iterative

Inputs
A

Design

10

Cone-of-Influence

Cone-of-Influence Computation

Iterative

Inputs
A

Design

11

Cone-of-Influence

Cone-of-Influence Computation

Iterative

Inputs
A

Design

12

Cone-of-Influence

Cone-of-Influence Computation

Iterative

Inputs
A

Design

13

Cone-of-Influence

Cone-of-Influence Computation

[terative Our Method
)
(] Pl
2 [0] P,
a < a <
£ i= _
P3
\ \ —
Design Design

* Repeated traversals
* Does not scale!

14

Cone-of-Influence

Cone-of-Influence Computation

[terative Our Method

Inputs
A
Inputs
A

Design

Design

* Repeated traversals
* Does not scale!

15

Cone-of-Influence

Cone-of-Influence Computation

[terative Our Method

Inputs
A
Inputs
A

Design Design

* Repeated traversals
* Does not scale!

16

Cone-of-Influence

Cone-of-Influence Computation

[terative Our Method

e

Inputs
A
Inputs
A

Design

Design

* Repeated traversals
* Does not scale!

17

Cone-of-Influence

Cone-of-Influence Computation

[terative Our Method

Inputs
A
Inputs
A

Design Design

* Repeated traversals * One traversal
* Does not scale! * Very scalable

18

Cone-of-Influence

COI Computation via Support Vectors

* Support variable — registers and inputs in COI

* Represent every support variable as a bit
* Bitvector operations to compute support (linear)

Support Vectors

e O 1 2 3 4 5 6 7 8 9

G. Cabodi, P. Camurati, and S. Quer, “A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple

properties,” Software: Practice and Experience, vol. 46, no. 4, pp. 493-511, 2016. 19

COI Computation via Support Vectors

* Support variable — registers and inputs in COI

* Represent every support variable as a bit
* Bitvector operations to compute support (linear)

Support Vectors

G. Cabodi, P. Camurati, and S. Quer, “A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple

properties,” Software: Practice and Experience, vol. 46, no. 4, pp. 493-511, 2016. 20

Cone-of-Influence

COI Computation via Support Vectors

* Support variable — registers and inputs in COI

* Represent every support variable as a bit
* Bitvector operations to compute support (linear)

 Constant-time inspection

Support Vectors

G. Cabodi, P. Camurati, and S. Quer, “A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple

properties,” Software: Practice and Experience, vol. 46, no. 4, pp. 493-511, 2016. 21

Support Vector Computation

* Several optimizations to improve time/memory

* Directed acyclic graph — SCCs = shorter bitvectors
* Garbage collection = peak memory requirement

1000+
‘3 100+
NG] +
E 1o T
5 il
—] _|_
2 14 Tt
5 T
e,] _ﬁﬂ‘
(@W
5 o014 Yo+
: T
0.01+ i
001 0.1 1 10 100 1000

Iterative time (sec)

Several orders of magnitude faster!

G. Cabodi, P. Camurati, and S. Quer, “A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple 7
properties,” Software: Practice and Experience, vol. 46, no. 4, pp. 493-511, 2016.

Structural Grouping

* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping

23

Structural Grouping

* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping
Level-1 Grouping

(identical support)

24

Structural Grouping

* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping
Level-1 Grouping

(identical support)

Level-2 Grouping

(SCC sharing)

25

Level 2 — SCC Sharing

 Several designs contain large SCCs in cone-of-influence
* Every SCC has a weight — number of registers in SCC
* Group properties that share large SCCs — at least weight ¢

Py, Py [1)of1frjrjofofojjrjrfofrjjofrfijoljojofi]r
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P3 offrfrffrfofrjfofrffoffrfrjfoffriyjoffofrjfofol1jo
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P4 offofrHoqpoyryryoyryofoyfiryoiryir|ijyolflfoflo
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ps offoffrfloffoffrfrjfofrffoffofrfofrfrjfriyofryzryjo
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T T
Y

“N” SCC bits

26

Structural Grouping

* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping
Level-1 Grouping

(identical support)

Level-2 Grouping

(SCC sharing)

27

Structural Grouping

* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping
Level-1 Grouping

(identical support)

Level-2 Grouping

(SCC sharing)

Level-3 Grouping R

(hamming distance)

28

Level 3 - Hamming Distance

* Exact Hamming distance calculation is slow, O(n?)

 Generate normalized support bitvectors
* Map generated offline or on-the-fly, < 1sec

* Group properties with identical mapped bitvectors

. 16-bits
I 1

V | 0101000101101101 0011110010111000 1100011000011111} 1101110000111001

N— N N N _/
N N N ~N
Vo = 20854 Vi = 15544 Vo = 50719 V3 = 56377
M(Vo) M(Vl) M(Vz) M(V3)

' ' ' '

M(V) 391 145 231 92

29

Structural Grouping

Properties with ‘similar” support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

Three-level approximate clustering (near-linear runtime)
Proof: affinity >= 3%t - 2

Properties in a group are checked concurrently; groups in parallel

Initial Grouping
Level-1 Grouping

(identical support)

Level-2 Grouping

(SCC sharing)

Level-3 Grouping R

(hamming distance)

30

Grouping Time
 Largest benchmarks (HWMCC)

 Simplified by logic synthesis; hard properties only
« 100 - 2,500 properties in a benchmark

31

Grouping Time

10;
g 1
‘q—)’ N
&
T 0.1

—> Level-1 <k Level-3
-O- Level-2 Overall

1 10 20 30 40 48

Benchmarks

Grouping takes <10 ms

32

End-to-End Speedup

* Engine portfolio - BMC, IC3, and Localization (LOC)

« BMC and IC3 can process multiple properties
* Localization concurrently

33

End-to-End Speedup

50] p
% 10 " NP §
=]
o0 1: s X X
3= ; x>< X ><><
& : X X
X
S 0.1 ; >><<¥3<>< X
O] >2<><
< ‘ A%
= 0.01 1)
B] x X
yX . | | | |
0.01 0.1 1 10 50
Multiple (hrs)
Median 4.3X speedup

34

Impact on Localization Abstraction

Localization
cutpoints

Original

. Property P
design

Localized
design

* Technique to remove irrelevant logic

* Iterative method, repeated cutpointing and refinement

* Concurrent localization of low-aftinity properties

+ Large localized designs, disjoint logic subsets, slow proofs

* Our procedure ensures high-atfinity property localization
* Small localized designs, faster prootfs

35

Structural

Impact on Localization Abstraction

* Compare with low-affinity groups — sort then partition

* First efficient multi-property localization solution!

50

- 103
— 1
< Z)%(x
z L KX
= ; XK
< 01!

E X
< KX
5 1 &
o v— | X
e O.OlE x

A&y :

001 01 1 10 50
Low Affinity (hrs)

Median 2.5X speedup

36

Structural Grouping

* Structurally-similar properties may have different semantics

* Subset of design logic in cone-of-influence

37

Structural Grouping

* Structurally-similar properties may have different semantics

 Subset of design logic in cone-of-influence, mix of hittable/unhittable

 Learn semantic information via localization abstraction

38

Semantic Partitioning

* Concurrently localize high-atfinity property group

39

Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design

40

Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design

41

Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design

42

Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design

« Attempt partitioning after N consecutive steps with no refinement

43

Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design
« Attempt partitioning after N consecutive steps with no refinement

* Structural grouping procedure w.r.t localized design

44

Impact on Localization Abstraction

* Selected benchmarks; some property groups solved by localization

* Single proof run; no spurious counterexamples

130- :
///><),

é 10; /;X

=

2 - e

CHERE X

01—

0.1 1 10 130

Disabled (mins)

45

Summary

Fast and online algorithm to group “high-affinity” properties
Initial Grouping

Structural Affinity Grouping
Semantic Affinity Partitioning

Three leveled grouping; identical, SCC sharing, and Hamming distance

4.3x speedup, minimal resource overhead

Yields groups with provable affinity bounds; might err (tradeoff)

First approach to optimize multi-property localization

Ongoing and future work
* Sequential equivalence checking (SEC) — each equivalence point is a property
e Structural vs. semantic — hard to know without consuming verification resource

Thank you!

http://temporallogic.org/research/FMCAD19/
46

