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Motivation

Multi-Property Verification

 Properties checked concurrently, or one-at-a-time

* Doesn’t optimally exploit sub-problem sharing

All properties
Model M
oo™
—
Multiple —
Properties

Verification Engine(s)

Opportunity to save verification resources!



Motivation

Improved Multi-Property Verification
* Group ‘high-affinity” properties; similarity metric

* Properties in a group are concurrently solved; parallel groups
* Engine effort reused across properties in a group

All properties

Grouped
Properties

Verification Engine(s)

What similarity metric to use?




Motivation

Similarity Measure

* Every property has distinct minimal cone-of-influence (COI)

* Multiple properties 2 exponential complexity w.r.t to collective COI
e Concurrent verification slower that one-at-a-time

* Nearly identical COI = save verification resource®
* Experimental demonstrated, offline-grouping

Structurally Similar

Inputs
A

Design

* G. Cabodi, P. E. Camurati, C. Loiacono, M. Palena, P. Pasini, D. Patti, and S. Quer, “To split or to group: from divide-and-conquer to sub- task sharing for 6
verifying multiple properties in model checking,” International Journal on Software Tools for Technology Transfer (STTT), vol. 20, no. 3, pp. 313-325, Jun 2018



Our Contributions

* Online procedure to partition properties into high-atfinity groups

* Near-linear runtime and automated; provable affinity bounds

Initial Grouping



Our Contributions

* Online procedure to partition properties into high-atfinity groups

* Near-linear runtime and automated; provable affinity bounds

* Property grouping based on cone-of-influence

* Structural information (static)

* Structurally-similar properties may have different semantics
* Subset of design logic in cone-of-influence
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Our Contributions

Online procedure to partition properties into high-affinity groups

* Near-linear runtime and automated; provable affinity bounds

Property grouping based on cone-of-influence

* Structural information (static)

Structurally-similar properties may have different semantics
* Subset of design logic in cone-of-influence

Property-group refinement using localization abstraction

¢ Semantic information (dynamic)

Initial Grouping
Structural Affinity Grouping (P3 %)
Semantic Affinity Partitioning




Cone-of-Influence

Cone-of-Influence Computation
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Cone-of-Influence

Cone-of-Influence Computation
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* Does not scale!
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Cone-of-Influence

Cone-of-Influence Computation

[terative Our Method

Inputs
A
Inputs
A

Design Design

* Repeated traversals * One traversal
* Does not scale! * Very scalable

18



Cone-of-Influence

COI Computation via Support Vectors

* Support variable — registers and inputs in COI

* Represent every support variable as a bit
* Bitvector operations to compute support (linear)

Support Vectors

e O 1 2 3 4 5 6 7 8 9

G. Cabodi, P. Camurati, and S. Quer, “A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple

properties,” Software: Practice and Experience, vol. 46, no. 4, pp. 493-511, 2016. 19
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Cone-of-Influence

COI Computation via Support Vectors

* Support variable — registers and inputs in COI

* Represent every support variable as a bit
* Bitvector operations to compute support (linear)

 Constant-time inspection

Support Vectors

G. Cabodi, P. Camurati, and S. Quer, “A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple

properties,” Software: Practice and Experience, vol. 46, no. 4, pp. 493-511, 2016. 21



Support Vector Computation

* Several optimizations to improve time/memory

* Directed acyclic graph — SCCs = shorter bitvectors
* Garbage collection = peak memory requirement
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Several orders of magnitude faster!

G. Cabodi, P. Camurati, and S. Quer, “A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple 7
properties,” Software: Practice and Experience, vol. 46, no. 4, pp. 493-511, 2016.



Structural Grouping

* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping
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* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping
Level-1 Grouping

(identical support)
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Structural Grouping

* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping
Level-1 Grouping

(identical support)

Level-2 Grouping

(SCC sharing)
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Level 2 — SCC Sharing

 Several designs contain large SCCs in cone-of-influence
* Every SCC has a weight — number of registers in SCC
* Group properties that share large SCCs — at least weight ¢
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Structural Grouping

* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping
Level-1 Grouping

(identical support)

Level-2 Grouping

(SCC sharing)
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Structural Grouping

* Properties with ‘similar’ support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

* Three-level approximate clustering (near-linear runtime)

Initial Grouping
Level-1 Grouping

(identical support)

Level-2 Grouping

(SCC sharing)

Level-3 Grouping R

(hamming distance)
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Level 3 - Hamming Distance

* Exact Hamming distance calculation is slow, O(n?)

 Generate normalized support bitvectors
* Map generated offline or on-the-fly, < 1sec

* Group properties with identical mapped bitvectors

. 16-bits
I 1
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N— N N N _/
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M(V) 391 145 231 92
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Structural Grouping

Properties with ‘similar” support bitvectors above threshold ¢

* Classical clustering — very slow, at least O(n?)

Three-level approximate clustering (near-linear runtime)
Proof: affinity >= 3%t - 2

Properties in a group are checked concurrently; groups in parallel

Initial Grouping
Level-1 Grouping

(identical support)

Level-2 Grouping

(SCC sharing)

Level-3 Grouping R

(hamming distance)

30



Grouping Time
 Largest benchmarks (HWMCC)

 Simplified by logic synthesis; hard properties only
« 100 - 2,500 properties in a benchmark

31



Grouping Time
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Grouping takes <10 ms
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End-to-End Speedup

* Engine portfolio - BMC, IC3, and Localization (LOC)

« BMC and IC3 can process multiple properties
* Localization concurrently

33



End-to-End Speedup
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Impact on Localization Abstraction

Localization
cutpoints

Original

. Property P
design

Localized
design

* Technique to remove irrelevant logic

* Iterative method, repeated cutpointing and refinement

* Concurrent localization of low-aftinity properties

+ Large localized designs, disjoint logic subsets, slow proofs

* Our procedure ensures high-atfinity property localization
* Small localized designs, faster prootfs
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Structural

Impact on Localization Abstraction

* Compare with low-affinity groups — sort then partition

* First efficient multi-property localization solution!
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Structural Grouping

* Structurally-similar properties may have different semantics

* Subset of design logic in cone-of-influence
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Structural Grouping

* Structurally-similar properties may have different semantics

 Subset of design logic in cone-of-influence, mix of hittable/unhittable

 Learn semantic information via localization abstraction
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Semantic Partitioning

* Concurrently localize high-atfinity property group

39



Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design

40



Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design

41



Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design

42



Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design

« Attempt partitioning after N consecutive steps with no refinement
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Semantic Partitioning

* Concurrently localize high-atfinity property group
* Repeated BMC steps to generate localized design
« Attempt partitioning after N consecutive steps with no refinement

* Structural grouping procedure w.r.t localized design

44



Impact on Localization Abstraction

* Selected benchmarks; some property groups solved by localization

* Single proof run; no spurious counterexamples
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Summary

Fast and online algorithm to group “high-affinity” properties
Initial Grouping

Structural Affinity Grouping
Semantic Affinity Partitioning

Three leveled grouping; identical, SCC sharing, and Hamming distance

4.3x speedup, minimal resource overhead

Yields groups with provable affinity bounds; might err (tradeoff)

First approach to optimize multi-property localization

Ongoing and future work
* Sequential equivalence checking (SEC) — each equivalence point is a property
e Structural vs. semantic — hard to know without consuming verification resource

Thank you!

http://temporallogic.org/research/FMCAD19/
46



