

Universities Press (India) Private Limited

Registered Office

3-6-747/1/A & 3-6-754/1, Himayatnagar, Hyderabad 500 029 (A.P.), India
email: info@universitiespress.com; www.universitiespress.com

Distributed by

Orient Blackswan Private Limited

Registered Office

3-6-752 Himayatnagar, Hyderabad 500 029 (A.P.), India

Other Offices

Bengaluru / Bhopal / Chennai / Ernakulam / Guwahati / Hyderabad / Jaipur / Kolkata / Lucknow / Mumbai / New Delhi /
Noida / Patna

© Dhananjay V Gadre 2013

All rights reserved. No part of this document may be reproduced, stored in retrieval systems, or transmitted in any form or
by any means, electronic, mechanical, photocopying or scanning, without the written permission of Dhananjay V Gadre.

Limits of liability: While the publisher and the authors have used their best efforts in preparing this book, they make no
representation or warranties with respect to the accuracy or completeness of the contents of this book, and specifically
disclaim any implied warranties of merchantability or fitness for any particular purpose. There are no warranties which
extend beyond the description contained in this paragraph. No warranty may be created or extended by sales representatives
or written sales materials. The accuracy and completeness of the information provided herein and the opinions stated herein
are not guaranteed or warranted to produce any particular results, and the advice and strategies contained herein may not
be suitable for every individual. Neither Universities Press nor the authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

Disclaimer: The contents of this book have been checked for accuracy. Since deviations cannot be precluded entirely,
Universities Press or the authors cannot guarantee full agreement. As the book is intended for educational purpose,
Universities Press and the authors shall not be responsible for any errors, omissions or damages arising out of the use of
the information contained in the book. This publication is designed to provide accurate and authoritative information with
regard to the subject matter covered. It is sold on the understanding that the Publisher is not rendering professional services.

Trademarks: All brand names and product names used in this book are trademarks, registered trademarks, or trade names of
their respective holders. Universities Press is not associated with any product or vendor mentioned in this book.

ISBN 978 81 7371 881 6

For sale in India, China, Pakistan, Bangladesh, Sri Lanka, Nepal, Bhutan, Indonesia and Malaysia only

Cover and book design

© Universities Press (India) Private Limited 2013

Typeset in Life BT 11pt by
OSDATA, Hyderabad 500 049

Printed in India by

Published by

Universities Press (India) Private Limited
3-6-747/1/A & 3-6-754/1, Himayatnagar, Hyderabad 500 029 (A.P.), India

To my teachers

Professors Vijender Sharma, Ashok Dhall and Rajesh Mohan

and

Dr Ashutosh Singh (VU2IF)

–Dhananjay V Gadre

To my parents, my brother

and

my grandfather, who is my inspiration

–Rohit Dureja

To my parents and my brother

–Shanjit S Jajmann

Contents

Preface xi

Acknowledgments xii

1 Introduction 1

1.1 Meet the Guru Kit 1
1.2 Step by Step! 2
1.3 Suggested List of Experiments 4

2 ARM
®

Cortex
™

-M3 Core and Stellaris
®

Peripherals 6

2.1 Overview of ARM® Cortex™-M3 Architecture 6
2.2 Cortex™-M3 Core Peripherals 8
2.3 Programmer’s Model 8

2.3.1 Core Registers 8
2.3.2 Operating Modes 10
2.3.3 Operating States 10
2.3.4 Privilege Levels 11

2.4 Memory Model 11
2.4.1 Memory Map 11
2.4.2 Bit-Banding 11

2.5 Texas Instruments Stellaris® ARM® Cortex™-M3 Family 13
2.6 Texas Instruments Stellaris® LM3S608 Microcontroller 14

2.6.1 Features and Peripherals 14
2.6.2 Pin Out 19

3 Stellaris
®

Guru Evaluation Kit 20

3.1 Guru Ahoy! 20
3.2 Guru Schematic and Board Layout 21
3.3 Design of the Guru Evaluation Kit 22

v

vi Contents

3.3.1 Power Supply 22
3.3.2 Microcontroller Connections 24
3.3.3 JTAG Interface 25
3.3.4 Arduino Interface Connector 26
3.3.5 USB Virtual COM Port 28
3.3.6 Audio Input 28
3.3.7 Light Sensor 28
3.3.8 LEDs and Switches 30
3.3.9 Temperature Sensor and Thumbwheel Potentiometer Input 31

3.4 Guru’s Arduino Interface in Detail 31

4 GNU ARM
®

Toolchain 33

4.1 Introduction 33
4.2 Programming Environment: Stellaris® Guru 36
4.3 Setting up the Development Environment 38

5 Anatomy of a C Program 56

5.1 Example 57
5.2 Experiment 1 57

5.2.1 Objective 57
5.2.2 Program Flow 57
5.2.3 Register Accesses 59
5.2.4 Program Code 60

5.3 Experiment 2 61
5.3.1 Objective 61
5.3.2 Program Flow 61
5.3.3 Register Accesses 63
5.3.4 Program Code 63

6 StellarisWare API 65

6.1 StellarisWare Peripheral Driver Library: A Layer of Abstraction 65
6.2 Features of the StellarisWare Peripheral Driver Library 66
6.3 Programming Models 66

6.3.1 Direct Register Access Model 66
6.3.2 Software Driver Model 67
6.3.3 Using Both Models 67

6.4 Useful StellarisWare API Function Calls 67
6.4.1 SysCtlClockSet 67
6.4.2 SysCtlClockGet 69
6.4.3 SysCtlPeripheralEnable 69

Contents vii

6.4.4 SysCtlDelay 70
6.4.5 SysCtlReset 70
6.4.6 IntMasterEnable 70
6.4.7 GPIOPinRead 71

7 Digital Input/Output 72

7.1 Experiment 3 72
7.1.1 Objective 72
7.1.2 Program Flow 72
7.1.3 Suggested StellarisWare API Function Calls 74
7.1.4 Program Code 74

7.2 Experiment 4 76
7.2.1 Objective 76
7.2.2 Program Flow 76
7.2.3 Suggested StellarisWare API Function Calls 77
7.2.4 Program Code 79

7.3 Experiment 5 81
7.3.1 Objective 81
7.3.2 Program Flow 81

7.4 Experiment 6 82
7.4.1 Objective 82
7.4.2 Program Flow 83

7.5 Experiment 7 85
7.5.1 Objective 85
7.5.2 Program Flow 85

7.6 Generating Random Numbers 86
7.7 Exercises 88

8 Interrupts 89

8.1 Exception Handling 89
8.1.1 Exception Types 89
8.1.2 Exception States 91
8.1.3 Exception Handler 91
8.1.4 Exception Priorities 92

8.2 Experiment 8 92
8.2.1 Objective 92
8.2.2 Program Flow 92
8.2.3 Suggested StellarisWare API Function Calls 93

8.3 Exercises 96

9 Timer and Counter 97

viii Contents

9.1 Introduction 97
9.1.1 General-Purpose Timers 97
9.1.2 SysTick Timer 98
9.1.3 Watchdog Timer 99

9.2 Functional Description 100
9.2.1 General-Purpose Timer Module 100
9.2.2 SysTick Timer 100
9.2.3 Watchdog Timer 100

9.3 Experiment 9 101
9.3.1 Objective 101
9.3.2 Program Flow 101
9.3.3 Suggested StellarisWare API Function Calls 103

9.4 Experiment 10 103
9.4.1 Objective 103
9.4.2 Program Flow 103
9.4.3 Suggested StellarisWare API Function Calls 104

9.5 Experiment 11 107
9.5.1 Objective 107
9.5.2 Program Flow 107
9.5.3 Suggested StellarisWare API Function Calls 108

9.6 Exercises 109

10 Serial Communication with the UART 111

10.1 Introduction 111
10.2 Functional Description 112

10.2.1 Half and Full Duplex Transmission 112
10.2.2 Serial Communication and Data Framing 113

10.3 Experiment 12 113
10.3.1 Objective 113
10.3.2 Program Flow 114
10.3.3 Suggested StellarisWare API Function Calls 114

10.4 Experiment 13 116
10.4.1 Objective 116
10.4.2 Program Flow 116

10.5 Experiment 14 117
10.5.1 Objective 117
10.5.2 Program Flow 118

10.6 Experiment 15 119
10.6.1 Objective 119
10.6.2 Program Flow 119

Contents ix

10.7 Exercises 121

11 Analog-to-Digital Converter 123

11.1 Introduction 123
11.2 Functional Description 124
11.3 Experiment 16 125

11.3.1 Objective 125
11.3.2 Program Flow 125
11.3.3 Suggested StellarisWare API Function Calls 126

11.4 Experiment 17 129
11.4.1 Objective 129
11.4.2 Program Flow 129

11.5 Experiment 18 131
11.5.1 Objective 131
11.5.2 Program Flow 131

11.6 Experiment 19 132
11.6.1 Objective 132
11.6.2 Program Flow 133

11.7 Experiment 20 134
11.7.1 Objective 134
11.7.2 Program Flow 135

11.8 Exercises 136

12 Power Management and System Control 137

12.1 System Control 137
12.1.1 Device Identification 137
12.1.2 System Control 137
12.1.3 Modes of Operation 139

12.2 Experiment 21 139
12.2.1 Objective 139
12.2.2 Program Flow 139
12.2.3 Suggested StellarisWare API Function Calls 141

12.3 Experiment 22 142
12.3.1 Objective 142
12.3.2 Program Flow 143

12.4 Exercises 144

Index 147

Preface

The development of the Guru evaluation board and the subsequent writing of this lab
manual marks the culmination of a long standing desire to create an ARM®-based platform
for pedagogical applications. I designed an ARM-based system in 2006, but it used a
time-limited Keil C compiler. As a teacher, I am not in favour of buying software tools for
educational applications and time-limited or code-size-limited professional tools (such as
Keil) never interested me. More recently, however, GNU ports for ARM microcontrollers
started becoming available, and I thought the time was ripe to create an ARM platform
for educational applications. Two years ago, I met Dr C P Ravikumar in rather fortuitous
circumstances and our discussions led to the idea of Texas Instruments (India) sponsoring
the development of a TI’s Cortex™-M3-microcontroller-based evaluation kit. We started
work on the development of Guru in December 2011 and had the first prototype ready
and tested in May 2012. A first batch of mass produced Guru kits were successfully used
in an Advanced Faculty Training Programme titled ‘Hardware and Firmware Design for
ARM-based Embedded Systems’, conducted by Centre for Development of Advanced
Computing (CDAC), Hyderabad, in June 2012. An initial user manual accompanied the
Guru kit, and it was decided to upgrade the manual with additional details and experiments
to a full-fledged lab manual, You, reader, are holding the result in your hands.

This lab manual is supported by a website (http://www.armcontroller.in), where you
can find software examples and other materials. The manual has 12 chapters. Chapters
1 through 4 deal with the features and design of the Guru kit, TIŠs ARM Cortex™-M3
architecture in brief and GNU ARM® software toolchain installation. Chapter 5 deals with
C programming for ARM. Chapters 6 through 12 deal with the various peripherals of the
ARM microcontroller. Each chapter illustrates one particular peripheral in detail through a
set of experiments. In all, the lab manual discusses 26 experiments that can be performed
on the Guru kit apart from the several suggested experiments; users are encouraged to try
their hand at performing these experiments.

The Guru kit can also be used as a useful resource for full-fledged projects including the
mandatory final-year BTech project. We would love to hear about your exploits with it.

xi

Acknowledgments

I acknowledge the following people for their help in various forms in completing this
book: Dr C P Ravikumar, Director of University Relations at Texas Instruments India,
without whose help this book would not have been possible, and Sagar Juneja, also from
Texas Instruments India, for his efficiency in providing us chip samples and evaluation
kits. Thanks are also due to several students at the Centre for Electronics Design and
Technology (CEDT) at NSIT, who helped in various ways throughout the development
of this manuscript and before that, during the designing of the Guru kit. I also thank Dr
Sarat Babu, Executive Director, CDAC, Bangalore, for his constant reminder of the need for
suitable teaching material on ARM microcontrollers, and Dr Sadanand Gulwadi, University
Program Manager at ARM Embedded Technologies Private Ltd, for useful discussions and
help with the initial prototype of the Guru Kit.

Thanks are also due to Harshit Jain and Anup Rajput, CEDT alumni, for their support
and help, and to Vaishnavi Sundararajan, another CEDT alumnus, currently a PhD student
of Computer Science at Chennai Mathematical Institute, for editing the book at our end, pro
bono. This publication by Universities Press was facilitated by Sreelatha Menon, Managing
Editor, whose faith in our capabilities was a big support to us all through the writing of the
book.

And most of all, thanks are due to my wife Sangeeta and son Chaitanya for their love,
care and understanding without which I could not have embarked upon or completed this
project.

Dhananjay V Gadre
New Delhi, India

xii

1 Introduction

This lab manual allows the user to get acquainted with the ARM® Stellaris® Cortex™-M3
microcontroller family through a hands-on approach by performing experiments on a
hardware evaluation kit.

The experiments proposed in the manual are of progressively increasing level of
difficulty. It exposes the readers to the various on-chip hardware features of the
microcontroller based on an open source hardware kit which we designed and named
‘Guru’. It is possible to perform several experiments using just Guru. However, more
versatility in the range of experiments can be built in using the expansion options Guru
offers through its onboard ‘Arduino’[1] connector that connects to external interface circuits
called ‘shields’. Besides, by choosing a proper combination of a shield and appropriate
software, one can even create several academic projects.

This manual, apart from describing the (we will use the term ‘Guru’ and ‘Stellaris Guru’
interchangeably in this manual), also describes several shields that allows various interfaces
and sensors to be connected to the microcontroller. Since the Guru kit offers the Arduino
interface, users can also design their own shields as well.

1.1 Meet the Guru Kit

The kit contains the following items:

1. The Stellaris® Guru circuit board
2. USB cable

The items can be seen in Figure 1.1.

Use the USB cable and connect the Stellaris® Guru kit to the USB port of your laptop
or desktop computer (to which we will henceforth refer to as the host computer). A few
indicator LEDs on the Guru kit should turn ON/flash, indicating that the board is in a
ready-to-use state. To identify which LEDs would blink and which would turn on, refer to
the annotated picture of the Stellaris® Guru kit in Figure ??. You will observe that

1

2 Introduction

Figure 1.1 Contents of the kit box

• the power indicator LED, LD1, would turn on and remain on continuously to indicate
that the Guru kit is receiving power from the host computer through the USB port.

• LEDs, LD3 and LD4, would flash momentarily, confirming that the Guru kit has
established serial communication with the computer.

1.2 Step by Step!

Once you get the indication that your kit is working properly, take time off to review the
contents of this lab manual.

Chapter 2 deals with the architecture of the Cortex™-M3 processor[2] and provides
only an overview of the processor. For further details of the working of the processor,
the reader is referred to the datasheet of the processor architecture from ARM®. This
chapter also provides an overview of the system-on-chip details of Texas Instruments
Stellaris® Cortex™-M3 family.

Chapter 3 provides the details of the Guru kit including the circuit diagram and its
operation. It dwells in great detail on the choice of various components of the kit and on its
power supply design.

Chapter 4 deals with the software tools that are necessary to program the Guru evaluation
kit. The tools described include download links for the Sourcery CodeBench Lite Edition,
which contains the GNU C/C++ Compliers, GNU Assembler, Debugger and other libraries,

Stellaris®ARM®Cortex™-M3 Lab Manual 3

Figure 1.2 A section of the Guru kit showing the important LEDs on the board

Eclipse IDE and the LM Flash programmer. These represent a complete end-to-end solution
for editing, compiling and debugging a C program and to download the resultant object
code file to the Guru kit. These tools can also be used to write, assemble and debug an
assembly language program as well, but this manual only illustrates programs and projects
in C alone.

Chapter 5 deals with the important and necessary sections of a C program for the
Stellaris® ARM® Cortex™-M3 controller, and the impact of each section on the final
executable file.

Chapter 6 deals with the Stellaris® driver library available from TI, which simplifies the
programming of the microcontroller by use of a common and simplified software interface
for all the peripheral devices present on the Stellaris® microcontroller. While the published
library from TI has hundreds of functions, this manual uses only a small subset of these
library functions that are most commonly used. These functions are described in this
chapter.

Chapter 7 deals with the digital input and output ports on the Stellaris® microcontroller.
It also tells you how to program the common input and output devices such as LEDs and
switches and to connect them to the input and output port pins.

Chapter 8 deals with the interrupts offered by the Stellaris® microcontroller. The
Stellaris® Cortex™-M3 has a rich interrupt structure, with each on-chip peripheral
equipped with several interrupt sources. Also, each digital input pin acts as an interrupt

4 Introduction

source. Issues related to creating interrupt service routines (ISR) that function in tandem
with the main program are described here.

Chapter 9 deals with the several timers available in the Stellaris® microcontroller and
describes the various modes in which these timers can be operated in and how they can be
used to generate time delays, interrupts, etc.

Chapter 10 describes the universal asynchronous receiver/transmitter links (UART)
available on the Stellaris® microcontroller for communication with a host computer or
with other devices (such as another Guru kit). Many of the Stellaris® microcontrollers have
multiple UART channels. The LM3S608 Stellaris® microcontroller on the Guru kit has two
UART channels.

Chapter 11 deals with the on-chip multi-channel ADC (analog-to-digital convertor)
and its various applications and the uses of the ADC peripheral. As most of the
Stellaris® microcontrollers do not have an on-chip DAC (digital-to-analog converter), the
PWM function together with an external low pass filter can be used to create slow rate
DACs. This chapter shows how to do that.

Chapter 12 illustrates the various operating modes of the microcontroller—active mode,
power saving mode and sleep mode—and how to invoke them.

In the next chapter, Chapter 2, we briefly look at the ARM® Cortex™-M3 architecture. But
before that, here is a list of suggested experiments that can be done using Guru.

1.3 Suggested List of Experiments

The experiments listed below can all be implemented on the Guru kit. You will be guided
on what experiments to perform at various stages as you progress through the chapters.
This will help to ensure that you have a gentle learning curve.

1. Blink an LED using the Register Access Model.
2. Control an LED through a switch by polling method using the Register Access

Model.
3. Blink an LED using functions from StellarisWare API.
4. Control an LED through a switch by polling method using functions from

StellarisWare API.
5. Blink LEDs in a controlled pattern.
6. Control intensity of an LED using PWM implemented in software.
7. Mimic light intensity sensed by the light sensor by varying the blinking rate of an

LED.
8. Control an LED through a switch by interrupt method and flash the LED once in

every five switch presses.

Stellaris®ARM®Cortex™-M3 Lab Manual 5

9. Blink an LED using delays generated using the SysTick timer.
10. Control intensity of an LED using PWM implemented in hardware.
11. System reset using the Watchdog timer in case something goes wrong.
12. UART Echo Test.
13. Control intensity of an LED on parameters received over UART.
14. Plot light intensity sensed by the light sensor on PC.
15. Generate a real time clock using timers and output time over UART.
16. Take analog readings on rotation of a rotary potentiometer connected to an ADC

channel.
17. Temperature indication on an RGB LED.
18. Display temperature on PC by sending values over UART.
19. Sample sound using a microphone and display sound levels on LEDs.
20. Sample sound and plot amplitude vs. time on PC.
21. Evaluate the various sleep modes by putting core into sleep and deep-sleep modes.
22. System clock real time alteration using the PLL modules.
23. Control intensity of an RGB LED to generate composite colours using PWM

implemented in software.
24. Control intensity of an RGB LED to generate composite colours using PWM

implemented in hardware.
25. Filter the sound input using three filters of high, medium and low frequencies and

show output on LEDs, one for each filter.
26. Sample sound and analyse its spectrum using FFT and plot amplitude vs. frequency

results on a PC.

2 ARM® Cortex™-M3 Core and
Stellaris® Peripherals

The ARM® Cortex™ family comprises processors based on three distinct profiles of the
ARMv7 architecture, viz.,

1. the A profile for sophisticated, high-end applications running on open and complex
operating systems,

2. the R profile for real-time systems, and
3. the M profile optimised for cost-sensitive and microcontroller applications.

The architecture of the ARM® Cortex™-M family of processors supports the performance
requirements of diverse applications in a wide range of domains including automotive
systems, networking and industrial applications. Cortex™-M3 is the first ARM® processor
based on the ARMv7-M core architecture, specifically designed to achieve high
performance in power- and cost-sensitive applications.
This high performance 32-bit processor offers the following significant benefits:

• Outstanding processing performance combined with fast interrupt handling
• Rapid application execution through Harvard architecture characterised by separate

instruction and data buses
• Enhanced system-debug capability with extensive breakpoint and trace capabilities
• Efficient processor core, system and memories
• Ultra-low power consumption with integrated-sleep and deep-sleep modes
• Thumb instruction set which combines high code density with 32-bit performance
• Optional memory protection unit (MPU) for safety-critical applications

2.1 Overview of ARM® Cortex™-M3 Architecture

The ARM® Cortex™-M3 processor is built on a high-performance processor core with
Harvard architecture and a 3-stage pipeline, ideal for embedded applications. It delivers

6

Stellaris®ARM®Cortex™-M3 Lab Manual 7

outstanding power efficiency through a combination of highly optimised instruction set
and a superior design enabled by a high-end processing hardware including single-cycle 32
bits ×32 bits multiplication and hardware division operations.

The Cortex™-M3 implementation allows the system components to be tightly coupled,
thereby reducing processing overheads and processor area while significantly improving
the interrupt handling and debug capabilities of the processor. The Cortex™-M3 uses a
version of the Thumb instruction set based on Thumb-2 technology[2] that ensures high
code density and reduced program memory requirements. The instruction set provides the
exceptional performance expected of the 32-bit processors with the high code density of
8-bit and 16-bit processors. Figure 2.1 shows the architecture of the ARM® Cortex™-M3.

Figure 2.1 Architecture diagram (ARM® Cortex™-M3 Technical References Manual, Revision r2p1)

The salient features of the Cortex™-M3 are summarised below; these will be discussed in
the subsequent sections.

• 32-bit processor with 32-bit data path, 32-bit register bank and 32-bit memory
interfaces

• Harvard architecture with separate instruction and data buses
• 3-stage pipeline comprising Instruction fetch, Instruction decode and Instruction

execute, with branch prediction

8 ARM®Cortex™-M3 Core and Stellaris®Peripherals

• The instruction fetch operation involves 32-bits. Up to two instructions can be fetched
in one cycle, resulting in more bandwidth being available for data transfer.

• ALU with hardware divide and single-cycle multiply operations
• Nested vector interrupt controller (NVIC) configurable to a maximum of 240 external

interrupts
• An optional memory protection unit (MPU) that permits control of individual regions

in the memory
• Configurable processor modes and privilege levels giving more control over

application execution and security

2.2 Cortex™-M3 Core Peripherals

The Cortex™-M3 includes the following system components:

• SysTick - The system timer is a 24-bit countdown timer that can be used as a
real-time operating system (RTOS) tick timer or a simple counter.

• Nested Vector Interrupt Controller (NVIC) - The NVIC is an embedded interrupt
controller that supports low latency interrupt handling and processing.

• System Control Block (SCB) - The SCB is the programmer’s model interface to the
processor. It provides system implementation information, control configurations,
system control and reporting of system exceptions.

• Memory Protection Unit (MPU) - The MPU improves system reliability by
defining memory attributes for different memory regions. It provides up to 8 distinct
regions and an optional predefined background region.

2.3 Programmer's Model

The Cortex™-M3 processor is based on the ARMv7-M architecture, which includes
the entire 16-bit Thumb instruction set and the base Thumb-2 32-bit Instruction Set
Architecture (ISA). Thumb-2 is a major enhancement to the Thumb instruction set
architecture, enabling higher code density than Thumb and higher performance with
16/32-bit instructions.

This section describes the Cortex™-M3 programmer’s model, where individual registers,
processor modes and access levels are dealt with.

2.3.1 Core Registers

Cortex™-M3 has the following 32-bit registers:

• 13 General-purpose registers, R0 to R12
• Stack pointer comprising two banked registers, main stack pointer (MSP) and

program stack pointer (PSP)

Stellaris®ARM®Cortex™-M3 Lab Manual 9

• Link register, R14
• Program counter, R15
• Special registers, like program status register (PSR), exception mask registers and

control register

The register map of the Cortex™-M3 is shown in Figure 2.2.

Figure 2.2 Register map (ARM® Cortex™-M3 Technical Reference Manual, Revision r2p1)

• General-purpose registers:

1. R0 to R12 are general-purpose registers for data operations.
2. Low registers: Registers R0 to R7 are accessible by all instructions that specify

a general-purpose register.
3. High registers: Registers R8 to R12 are accessible by all 32-bit instructions that

specify a general-purpose register.

Registers R13, R14 and R15 have the following special functions.

• Stack pointer: Register R13 is the stack pointer. It contains two stack pointers that
are banked so that only one is visible at a time.

10 ARM®Cortex™-M3 Core and Stellaris®Peripherals

1. Main Stack Pointer (MSP) used by the stack pointer and exception handlers,

2. Program Stack Pointer (PSP) used by the application code.

• Link register: Register R14 is the link register. It stores the return information for
subroutines, function calls and exceptions.

• Program counter: The program counter (PC) is Register R15. It holds the current
program address. On reset, the PC is loaded with the value of the reset vector.

Cortex™-M3 also has a number of special registers. They are:

• Program status register (xPSR): It provides arithmetic and logic processing flags,
execution status and the number of the currently executing interrupt and includes the
application PSR, the interrupt PSR and the execution PSR.

• Interrupt mask registers:

1. PRIMASK, which disables all interrupts except the nonmaskable interrupt
(NMI) and hard fault

2. FAULTMASK, which disables all interrupts except the NMI

3. BASEPRI, which disables all interrupts of a specified or lower priority levels

• Control register (CONTROL): The control register defines the privilege status and
the pointer selection.

2.3.2 Operating Modes

The processor supports two modes of operation, namely, thread mode and handler mode.

• The processor enters the thread mode upon reset or when it returns from an exception.
Both privileged code and user code can run in thread mode.

• The handler mode is entered into as a result of an exception. All code is privileged in
the handler mode.

2.3.3 Operating States

The processor can operate in one of the two operating states:

• Thumb state: This is the normal execution mode, running 16-bit and 32-bit
halfword-aligned Thumb and Thumb-2 instructions.

• Debug state: This is the state when halting in debug mode.

Stellaris®ARM®Cortex™-M3 Lab Manual 11

2.3.4 Privilege Levels

The code can execute as privileged code or unprivileged (user) code. Unprivileged
execution limits or excludes access to some of the resources, while the privileged mode
has access to all the resources.

• Unprivileged - In this mode, software has the following restrictions.

– No access to system timer, NVIC or system control block
– Restricted access to memory and peripherals

• Privileged - In this mode, software can use all instructions and has access to all
resources. In thread mode, the CONTROL register controls whether the processor
uses the main stack or the program stack. In handler mode, the processor always uses
the main stack. The options for processor operations are summarised in Table ??.

Table 2.1 The various privilege levels and operating modes of the processor

Processor mode Use Privilege level Stack used

Thread Applications Privilege or user Main or program stack
Handler Exception handler Privilege Main stack

2.4 Memory Model

This section describes the processor’s memory map, the behaviour of memory accesses and
its bit-banding features.

2.4.1 Memory Map

The Cortex™-M3 processor has a memory-mapped system with up to 4 gigabytes of
addressable memory space with predefined, dedicated addresses for code (code space),
SRAM (memory space), external memories/devices and internal/external peripherals.
There is also a special region to provide vendor-specific addressability. Figure 2.3 shows
the memory map of the ARM® Cortex™-M3.

2.4.2 Bit-Banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band
region. The bit-band region occupies the lowest 1MB of the SRAM and the peripheral
memory regions.

The memory map has two 32MB alias regions, one in the SRAM and the other in the
peripherals memory region that map to two 1MB bit-band regions in the respective spaces,
whereby

12 ARM®Cortex™-M3 Core and Stellaris®Peripherals

Figure 2.3 Memory map

• accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region.
• accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band

region.

A word access to the SRAM or peripheral bit-band alias region maps to a single bit in the
SRAM or peripheral bit-band region. Bit band accesses can use byte, halfword, or word
transfers. The bit band transfer size matches the transfer size of the instruction making the
bit band access. Bit banding is further explained using Figure 2.4.

Stellaris®ARM®Cortex™-M3 Lab Manual 13

Figure 2.4 Bit banding (Stellaris® LM3S608 microcontroller datasheet)

2.5 Texas Instruments Stellaris® ARM® Cortex™-M3 Family

In the Stellaris® Guru development board, we use an ARM® Cortex™-M3 based
microcontroller from the Stellaris® family of Texas Instruments. Before getting into the
details of the controller used in the Stellaris® Guru kit, we would like to highlight some
of the prime features available on the Stellaris® family of microcontrollers from Texas
Instruments.

• ARM® Cortex™-M3 v7-M Processor Core

– Up to 80 MHz

– Up to 100 MIPS (at 80 MHz)

• On-Chip Memory

– 256 kB Flash, 96 kB SRAM

– ROM loaded with Stellaris® Driver-Lib, boot-loader, AES tables and CRC

• External Peripheral Interface (EPI)

– 32-Bit dedicated parallel bus for external peripherals

– Supports SDRAM, SRAM/Flash, M2M

• Advanced Serial Communication

– 10/100 Ethernet MAC and PHY

14 ARM®Cortex™-M3 Core and Stellaris®Peripherals

– Three CAN 2.0 A/B controllers
– USB full speed, OTG/Host/Device
– Three UARTs with IrDA and ISO 7816 support
– Two I2Cs
– Two synchronous serial interfaces (SSI)
– Integrated interchip sound (I2S)

• System Integration

– 32 Channel direct memory access (DMA) controller
– Internal precision 16MHz oscillator
– Two watchdog timers with separate clock domains
– ARM® Cortex™ SysTick timer
– Four 32-bit timers with real-time clock (RTC) capability
– Low power battery backed hibernation module
– Flexible pin-muxing capability

• Advanced Motion Control

– Eight advanced PWM outputs for motion and energy applications

– Two quadrature encoder inputs (QEI)

• Analog

– 2 × 8 Channel 10-bit ADC (for a total of 16 channels)
– Three analog comparators
– On-chip voltage regulator (1.2V internal operation)

The controller used on the Stellaris® Guru board might not have all the features
outlined above. We discuss the features and capabilities of the Stellaris® LM3S608
ARM® Cortex™-M3 based microcontroller, which is the heart of the Guru development
kit. But before we do that, the entire TI Stellaris® family is briefly showcased in Table 2.2
for your reference.

The LM3S608 belongs to the 600 Series family characterised by 32 kB flash, 8 kB
SRAM, a max speed of 50 MHz, 10 bit ADC, dual USART, I2C, SSI and motion control,
and is available in a 48LQFP package.

2.6 Texas Instruments Stellaris® LM3S608 Microcontroller

2.6.1 Features and Peripherals

A Texas Instruments Stellaris® LM3S608 microcontroller forms the heart of the
Stellaris® Guru board. The following sections describe the various features available on
the controller and its pin out. Figure 2.5 shows the various features of the LM3S608.

Stellaris®ARM®Cortex™-M3 Lab Manual 15

Table 2.2 Stellaris® Family of Cortex™-M3 microcontrollers

Family Flash SRAM Max I/O Package Features

(kB) (kB) Speed(MHz) Pins

x00 8 kB to 2 kB 20MHz Upto 48LQFP, 10bit ADC, USART
Series 64 kB to to 36 48QFP I2C, SSI, Motion
(Real Time 8 kB 50MHz Pins control
MCUs)
1000 64 kB 19 kB 25MHz Upto 64LQFP, 10/12 bit ADC,
Series to to to 67 100LQFP, USART, I2C, SSI,
(Real Time 512 kB 96 kB 80MHz 108BGA Motion control,
MCUs) Hibernation

module
2000 64 kB 19 kB 25MHz Upto 64LQFP, 10/12 bit ADC,
Series to to to 67 100LQFP, USART, I2C, SSI,
(CAN 512 kB 96 kB 80MHz 108BGA Motion control,
Connected CAN, Hibernation
MCUs) module
3000 16 kB 6 kB 50MHz Upto 64LQFP, 10/12 bit ADC,
Series to to 61 100LQFP, USART, I2C, SSI,
(USB 256 kB 64 kB Motion control, USB
Connected O/H/D,
MCUs) Hibernation

module
5000 16 kB 8 kB 50MHz Upto 64LQFP, 10/12 bit ADC,
Series to to to 72 100LQFP, USART, I2C, SSI,
(USB + 512 kB 96 kB 80MHz 108BGA Motion control,
CAN USB O/H/D, CAN
MCUs) Hibernation

module
6000 64 kB 16 kB 25MHz Upto 100LQFP, 10/12 bit ADC,
Series to to to 46 108BGA USART, I2C, SSI,
(Ethernet 512 kB 64 kB 80MHz Ethernet, Motion
Connected control,
MCUs) Hibernation

module
8000 96 kB 64 kB 50MHz Upto 100LQFP, 10/12 bit ADC,
Series to to 46 108BGA USART, I2C, SSI,
(Ethernet 512 kB 80MHz Ethernet, CAN
+ CAN Motion control,
MCUs) Hibernation

module
9000 128 kB 64 kB 80MHz Upto 100LQFP, 10/12 bit ADC,
Series to to 72 108BGA USART, I2C, SSI,
(Ethernet 512 kB Ethernet, CAN
+ CAN + USB O/H/D,
USB Motion control,
MCUs) Hibernation

module

16 ARM®Cortex™-M3 Core and Stellaris®Peripherals

Figure 2.5 Stellaris® diagram (Stellaris® LM 3S608 microcontroller datasheet)

• 32-Bit RISC Performance

– 32-Bit ARM® Cortex™-M3 v7-M architecture
– SysTick timer, providing a simple 24-bit clear-on-write, decrementing,

wrap-on-zero counter
– Thumb compatible Thumb-2 only instruction set
– 50 MHz operation
– Integrated nested vector interrupt controller
– 23 Interrupts with eight priority levels

• Internal Memory

– 32 kB single cycle flash
– 8 kB single cycle SRAM

Stellaris®ARM®Cortex™-M3 Lab Manual 17

• GPIOs

– 5-28 GPIOs, depending on configuration
– 5 V-tolerant input configuration
– Fast toggle capable of a change every two clock cycles
– Programmable control for GPIO interrupts
– Programmable control for GPIO pad configuration

• General-Purpose Timers

– Three general-purpose timer modules, each of which provides two 16-bit
timers/counters. Each can be configured independently:

* as a single 32-bit timer

* as one 32-bit real-time clock

* for pulse width modulation.

• ARM® FiRM-compliant Watchdog Timer

• Analog to Digital Converter

– Eight analog input channels
– Single-ended and differential input configurations
– On-chip internal temperature sensor
– Sample rate of 500,000 samples/second

• UART

– Two fully programmable 16C550-type UARTs
– Separate 16×8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt

service loading
– Fully programmable serial interface characteristics

* 5, 6, 7 or 8 data bits.

* Even/odd/stick or no-parity generation

* 1 or 2 stop-bit generation

• Synchronous Serial Interface

– Master or slave operation.

– Programmable clock bit rate and operation

– Programmable data frame size from 4 to 16 bits

• Inter-Integrated Circuit

– Devices on the I2C bus can be designated as either master or a slave.

18 ARM®Cortex™-M3 Core and Stellaris®Peripherals

– Four I2C modes

* Master transmit

* Master receive

* Slave transmit

* Slave receive

– Two transmission speeds, standard (100 kbps) and fast (400 kbps)
– Master and slave interrupt generation

• Analog Comparators

– One integrated analog comparator
– Configurable for output to drive an output pin, generate an interrupt or initiate

an ADC sample sequence

• Power Management

– On-chip low drop (LDO) voltage regulator with programmable output user
adjustable from 2.25 V to 2.75 V.

– Low power options on the controller: Sleep and Deep Sleep modes
– Low power options for peripherals: software controls shutdown of individual

peripherals
– 3.3 V supply brownout detection and reporting via interrupt or reset

• Flexible Reset Sources

– Power-on reset (POR)
– Reset pin assertion
– Brownout (BOR) detector alerts to system power drops
– Software reset
– Watchdog timer reset

• JTAG

– IEEE 1149.1-1990 compatible test access port (TAP) controller
– Four bits instruction register (IR) chain for storing JTAG instructions
– IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD,

EXTEST and INTEST
– Integrated ARM® serial wire debug (SWD)

Stellaris®ARM®Cortex™-M3 Lab Manual 19

2.6.2 Pin Out

The LM3S608 used on the kit is in the 48-pin thin quad flat package (TQFP). The pin-out
for the LM3S608 is shown in Figure 2.6.

Figure 2.6 LM3S608 pin-out (Stellaris® LM3S608 microcontroller datasheet)

3 Stellaris® Guru Evaluation Kit

In the previous chapter we looked at the architecture of the Stellaris® microcontroller,
especially the peripherals. In this chapter we look at the Guru kit in detail.

3.1 Guru Ahoy!

Now to the Guru evaluation kit! Figure ?? shows an annotated photograph of the Guru
PCB. There are quite a few features on this circuit board that measures 2.7 inches by 2.5
inches.

As shown in Figure 3.1, the Guru kit has the following features

1. Uses an LM3S608 microcontroller from the TI Stellaris® 600 series
2. Offers user switches, uni-colour LEDs and an RGB LED
3. Reset push button and a power indicator LED
4. An LM35 analog temperature sensor connected to one of the ADC channels of the

microcontroller
5. A thumbwheel potentiometer connected to an ADC channel of the microcontroller
6. A microphone with a high gain amplifier connected to an independent ADC channel

of the microcontroller
7. An ambient light sensor using a LED operated in reverse bias
8. A standard ARM® 20-pin JTAG debug connector
9. Arduino-compatible interface connector

10. UART0 accessible through a USB virtual COM port (VCP)
11. A preinstalled boot loader. The user can download application code into the

microcontroller through the USB virtual COM port.
12. The USB virtual COM port for communication and as well as for supplying power

to the Guru

Some of these features are highlighted in Figure 3.1.

20

Stellaris®ARM®Cortex™-M3 Lab Manual 21

Figure 3.1 Annotated photograph of the Guru printed circuit board

3.2 Guru Schematic and Board Layout

Figure 3.2 shows the component placement of the Guru PCB. This figure is useful if you
want to verify the placement of a particular component from the schematic diagram.

Figure 3.3 shows the complete schematic diagram of the Guru. Broadly, the sub-sections
of the Guru kit include:

1. Power supply
2. Connections of the LM3S608 microcontroller to various other components
3. The JTAG interface
4. Arduino interface
5. USB interface to the personal computer
6. Microphone and audio amplifier
7. Light sensor
8. User programmable LEDs and switches
9. Temperature sensor and the thumb wheel potentiometer input

22 Stellaris® Guru Evaluation Kit

Figure 3.2 Guru PCB component placement

Let us now explore each and every component shown in the diagram in the next section.

3.3 Design of the Guru Evaluation Kit

The main objective of any evaluation kit is to allow a user to download test programs
in the target microcontroller from the host computer with minimum difficulty. Since the
evaluation kit is a standalone circuit, it needs a power supply for its operation.

3.3.1 Power Supply

Figure 3.4 shows the power supply section of the circuit. Power is derived from the USB
port of the kit when it is connected to the host PC. A USB interface provides av+5 V voltage
on its pins for use by the slave device to which it connects; this is used by the Guru.

The LM3S608 Cortex™-M3 microcontroller (IC1) on Guru requires +3.3 V for its
operation. The power supply circuit uses a LM1117-3.3 low dropout (LDO) voltage
regulator (IC3) from TI to provide the operating voltage to the microcontroller. Using an
LDO in this circuit is critical since the maximum allowable drop

Stellaris®ARM®Cortex™-M3 Lab Manual 23

24 Stellaris® Guru Evaluation Kit

Figure 3.4 Guru power supply section (REG117 refers to the LM117-3.3 V voltage regulator IC)

voltage between the voltage input and output pins is 1.7 V. LM1117 series of LDO voltage
regulators does a good job for the requirement here, since these regulators need only a
maximum of 1.2 V dropout voltage.

According to the microcontroller datasheet, the maximum current required by the
LM3S608 microcontroller is about 100 mA when it is operating at 50 MHz. The
LM1117-3.3 LDO is capable of providing 800 mA current and thus meets the requirement
of the microcontroller easily.

Some of the other components on the Guru such as the LM358 op-amp (IC5), the
LM35 (IC6) temperature sensor and the Arduino interface connector require +5 V for their
operation. The +5 V is sourced directly from the USB connector.

To protect the host PC’s USB port from over-current fault condition on the Guru, a
positive temperature coefficient (PTC) fuse (labelled F1 in the schematic diagram) is used.
Capacitors C1 and C2 (both 10 uF/16 V Tantalum) are required by the LDO for filtering.
LED (LD1) provides power-on indication.

3.3.2 Microcontroller Connections

Figure 3.5 shows the pin connections of the LM3S608 microcontroller (IC1). There are 4
power supply pins and 4 ground pins. A 0.1 uF capacitor is installed between each Vcc and
ground pin for filtering the power supply. The power supply pins get the operating voltage
from the LM1117-3.3 LDO.

Internally, the microcontroller has an additional LDO to power the controller’s internal
logic. This LDO derives power from the Vdd pins (+3.3 V) and has a nominal output of
+2.5 V. This LDO requires an external capacitor of a value of 1 uF or more. A 1 uF ceramic
capacitor (C13) is therefore connected to the LDO pin of the microcontroller (pin 6) as
shown in the schematic diagram in Figure 3.5.

The microcontroller has several sources of reset. One of them is an external pin reset
(called Reset pin assertion in the datasheet). This is Pin 5, labelled *RST. To allow a user
to reset the microcontroller, a switch S1 is connected between the *RST pin and ground. A
filter capacitor C14 is also connected in parallel to the switch. A pull-up resistor, R6, holds
the *RST pin to logic ‘1’ when the switch is not pressed.

Stellaris®ARM®Cortex™-M3 Lab Manual 25

Figure 3.5 LM3S608 Microcontroller pins on the Guru

The OSC0 and OSC1 pins of the microcontroller, which are inputs of the main oscillator
circuit of the microcontroller, are connected to a 8 MHz quartz crystal (Q1). The crystal
requires two 22 pF capacitors (C11 and C12) connected to ground for reliable operation
of the oscillator. The recommended value of the external quartz crystal can be any value
between 1 MHz to 8.192 MHz.

The rest of the pins of the microcontroller are the port pins as shown in figure 3.5. These
pins are appropriately connected to the onboard resources such as the LEDs, switches, etc.,
as discussed in the subsequent sections.

3.3.3 JTAG Interface

The microcontroller used in Guru offers a Joint Test Action Group[3](JTAG) port for
debugging applications as well as for programming the internal flash memory. JTAG is a
four-wire interface—the TDI, TDO, TMS and TCK pins are required by an external JTAG
debugger/programmer to connect to the microcontroller pins.

26 Stellaris® Guru Evaluation Kit

The JTAG interface also requires access to the external reset input (*RST). Figure 3.6
shows the standard ARM® -20 JTAG connector. There are also other connector types in
use, but ARM®-20 is one of the most popular ones.

Irrespective of the type of connector used, the JTAG interface signals (TDI, TDO, TCK
and TMS) remain the same. These signals are shared with other peripheral functions as
seen in Figure 3.6, e.g., TDI is also available as general purpose input/output (GPIO) pin
mapped to PC2 port.

Serial wire debug (SWD) is, as the name suggests, an interface used for real-time
debugging of the microcontroller circuits. SWD is a two-wire interface with a serial data
(SWDIO) and serial clock (SWCLK). The signals used for JTAG interface are also shared
with the SWD interface. Thus, the user is free to either use the JTAG or the SWD interface
on the Guru board.

Figure 3.6 JTAG interface to the LM3S608 microcontroller on the Guru

3.3.4 Arduino Interface Connector

Arduino is an open source microcontroller learning and experimentation kit that allows
non-specialists to use and access microcontrollers in cross-disciplinary applications. The
hardware consists of an Atmel AVR microcontroller with four interface connectors for
the power supply, input, output and analog pins. The board is programmed through a
USB interface and the software consists of a wrapper software running on top of a GCC
compiler for AVR, and an IDE (Integrated Development Environment) on the host PC to
write, compile and download the programs into the target AVR chip which has a resident
custom bootloader. The interface connectors consist of two 8-pin connectors and two 6-pin
connectors and are arranged as shown in Figure 3.7.

The Stellaris®Guru kit uses a FT232RL (IC4) USB-to-serial bridge connected between
UART0 of the microcontroller and the USB to field program the microcontroller
over UART using the boot loader program (which is factory-programmed into the
microcontroller).

The USB port can also be used to send data from the microcontroller to a connected
host PC. Appropriate code on the microcontroller can simply transfer data through the

Stellaris®ARM®Cortex™-M3 Lab Manual 27

UART0 port of the microcontroller, which is converted to USB protocol by the FT232RL
USB-to-serial bridge IC. A connected PC can receive the data using one of several terminal
emulation application programs such as Hyper Terminal, Bray++, etc[4]. The connections
between the microcontroller and the FT232RL are shown in Figure 3.9.

Figure 3.7 Dimensions of the Arduino PCB and the placement and spacing of the interface connectors.

The actual Arduino PCB outline is more curvy than shown here.

Figure 3.8 Arduino interface on the Guru

28 Stellaris® Guru Evaluation Kit

3.3.5 USB Virtual COM Port

Figure 3.9 Guru USB connection

3.3.6 Audio Input

The audio amplifier is a two-stage, ac-coupled microphone amplifier. We have used a
capacitive microphone that requires a biasing voltage of +5 V supplied through R12.
The supply voltage to the LM358 is also +5V and is taken directly from the USB bus.
LM358 is a two-stage operation amplifier. The first stage uses one op-amp in non-inverting
configuration while the second stage is a voltage follower.

Resistors R10 and R11 provide a bias voltage equal to half the supply voltage to input of
the first op-amp. The DC voltage to the op-amp is blocked by the coupling capacitor C15
while the AC voltage from the microphone is passed by it and the signal is amplified with
a gain determined by resistors R7 and R8. The output of the LM358 is connected to ADC6
of the microcontroller.

The schematic diagram of the audio amplifier is illustrated in Figure 3.10.

3.3.7 Light Sensor

The Guru kit uses a LED as a sensor (LED2) to measure light intensity. The use of a normal
LED as a light sensor may seem novel but there is a lot of literature available that explains
the operation of a LED as a light sensor. To confirm the operation of a LED as a sensor, the
reader is encouraged to take a normal LED and connect the terminals to a digital voltmeter
and expose the LED to ambient light. The voltmeter should show a voltage reading which
may be as much as 1.2V in bright daylight.

Stellaris®ARM®Cortex™-M3 Lab Manual 29

Figure 3.10 Microphone amplifier on the Guru

The model of an LED as a sensor[5] consists of an internal capacitance in parallel
to an internal current source. The value of the current source is directly proportional to
the ambient light falling on the LED. To operate the LED as a sensor, it is connected
to a programmable pin of the microcontroller and is reverse biased (i.e. the anode is
connected to ground and the cathode is connected to the pin) by setting the pin to logic
‘1’. This charges the internal capacitance to the voltage associated with logic ‘1’ (in the
present case, around 3.3V). After a short duration in this state, the pin to which the LED
cathode is connected is converted to an input pin (through a program executing on the
microcontroller).

The internal current source parallel to the capacitor now discharges the capacitor.
The rate of discharge depends upon the strength of the current source, which in turn
depends upon the ambient light to which the LED is exposed. An internal timer of
the microcontroller (or a program loop) is used to measure the time it takes for the
capacitor voltage to discharge (from the original logic ‘1’ voltage) to logic ‘0’. This time is
proportional to the ambient light. Thus a normal LED with the help of the simple resources
on a microcontroller can be used to measure ambient light.

The circuit is shown in Figure 3.11. The resistor R2 in series with the LED is only for
protection and does not affect or assist the measurement process.

Figure 3.11 Guru light sensor based on an LED

30 Stellaris® Guru Evaluation Kit

3.3.8 LEDs and Switches

Figure 3.12 User switches on the Guru

The Guru kit consists of three unicolour-LEDs: LD5, LD6 and LD7, one RGB LED: RGB1
and two user pushbuttons: S2 and S3. S2 and S3 are connected to pins PE0 and PE1
respectively. The cathodes of LEDs are connected to pins PC5, PC6 and PC7 of the micro
controller. Choice can be made between the three uni-colour LEDs and the RGB LED by
placing an appropriate jumper on J1. The anodes of all LEDs are connected to +3.3 V.
The LEDs are connected to the Capture/Compare/PWM (CCP) and hence can be used with
pulse width modulation for intensity control. The connections are shown in Figures 3.12
and 3.13.

Figure 3.13 Uni-colour and RGB LED on the Guru

Stellaris®ARM®Cortex™-M3 Lab Manual 31

3.3.9 Temperature Sensor and Thumbwheel Potentiometer Input

To evaluate the analog to digital conversion capabilities of the microcontroller, a LM35
temperature sensor (IC6) and a thumbwheel potentiometer (POT1) are provided on
the Guru board. The two are connected to the same analog channel, ADC7, of the
microcontroller. Either of the two can be selected by using jumper J2. The LM35 is powered
by +5V coming from the USB bus. Figure 3.14 shows the circuit connections.

3.4 Guru's Arduino Interface in Detail

An important feature of the Guru is the Arduino hardware interfiace connectors. These
connectors allow a user to extend the capabilities of Guru by interfacing suitable ‘shields’[6]

with the required additional hardware features that are not available on the Guru board. A
user can either design these required shields or use existing third party shields. A master
list of such shields is available on the Internet (http://www.shieldlist.org).

However, in case users wish to design their own shields, then details of the Guru’s
resident microcontroller signals that are available on the Arduino style connectors would
be required. Table 3.1 shows the details of these signals, their default functions as well as
the additional functions these signals can offer. The first column of the table enumerates
the Arduino designated signals.

Figure 3.14 Temperature sensor and thumb wheel potentiometer on the Guru

The next chapter will deal with installing and setting up the required tool chain for the
ARM® microcontrollers in general and the Guru in particular. These software tools include
the Sourcery CodeBench Lite Edition, the Eclipse[7] Integrated Development Environment
(IDE) and the LM Flash programmer. Once these tools are installed, the user is ready to
write and test application programs on the Guru board.

32 Stellaris® Guru Evaluation Kit

Table 3.1 Guru’s Arduino interface pins and their functions

Pin Type (Digital/ Default function Alternate use

name Analog/Other)

RX Digital UART Receive, PD2 Digital I/O
TX Digital UART Transmit, PD3 Digital I/O
D2 Digital Digital I/O, PB5 CCP5 (Motion Control)
D3 Digital Digital I/O, PB4 C0 (Analog comparator)
D4 Digital Digital I/O, PB1 CCP2 (motion control)
D5 Digital Digital I/O, PB0 CCP0 (motion control)
D6 Digital Digital I/O, PB6 C0+ (Analog comparator)
D7 Digital Digital I/O, PB7
D8 Digital Digital I/O, PC4
D9 Digital Digital I/O, PD0
D10 Digital Digital I/O, PA3 SSIFSS (SPI)
D11 Digital Digital I/O, PA5 SSITX (SPI)
D12 Digital Digital I/O, PA4 SSIRX (SPI)
D13 Digital Digital I/O, PA2 SSICLK (SPI)
A0 Analog ADC input0
A1 Analog ADC input1
A2 Analog ADC input2
A3 Analog ADC input3
A4 Analog ADC input4/SDA(I2C) Digital I/O, PB3
A5 Analog ADC input5/SCL(I2C) Digital I/O, PB2
RES Other Reset input
VIN Other DC input voltage Not connected on Guru
5V Other 5V supply
3.3V Other 3.3V supply
AREF Other Analog reference voltage Not connected on Guru
GND Other Ground

4 GNU ARM® Toolchain

4.1 Introduction

The language of a barebones computer is either a ‘0’ or ‘1’. Hence, a computer talks
and interacts in binary numbers. You must be familiar with coding in C/C++ or Java. All
these languages are known as high-level languages and resemble the dialect of normal
written English. However, the computer cannot understand programs written in a high-level
languages directly. It is the job of a compiler to translate this high-level code into a series
of ‘0’s and ‘1’s which the computer understands.

Now, it is difficult to write code as a pattern of binary numbers. Therefore, we prefer
to write a program in a high level language and then leave it to the compiler to do rest of
the work for us. This chapter discusses compilers, linkers and assemblers which enable us
to translate high level code into machine language. It details all the necessary steps to be
followed for setting up one’s computer to compile programs for the ARM® target.

Figure 4.1 The black box model for the Stellaris® Guru programming environment

The black box shown in Figure 4.1 is responsible for making specific target executable files
for the hardware. The primary aim of this chapter is to expose the user to tools inside this
box and show how different tools come together to finally get the required binary executable
format before burning it onto the Stellaris® Guru.

33

34 GNU ARM® Toolchain

The contents of the black box include:

1. Integrated Development Environment (IDE) - The IDE is the front-end of the
black box and is responsible for directly interacting with the user. It represents the
editor and file/project explorer to the user.

Figure 4.2 The build process for Stellaris® Guru

2. Toolchain - The toolchain is the most critical part of the black box responsible for
carrying out the build process, i.e., everything from pre-processing, compiling, to
assembling and finally, to linking the object modules. There are a variety of tools in
a toolchain that convert the code in high level languages to the specified format of
1s and 0s depending on the arguments supplied. They are Compilers, Assembler and
Linkers, besides which the Toolchain also provides a set of tools for debugging and a
set of tools for converting between executable file formats. (In this manual, we willl
use the C language to program the Stellaris® Guru kit.) Figure 4.2 shows the build
process and Figure 4.3 the various software modules of the toolchain.

Stellaris®ARM®Cortex™-M3 Lab Manual 35

Figure 4.3 Various software modules of the toolchain

Outline of Steps

Pre-Processing

Pre-processing is the first step in the build process. It mainly consists of three
sub-steps,

(a) Macro substitution
(b) Inclusion of header files
(c) Removal of comments

The C pre-processor, used in building C projects, is the most commonly used
pre-processor. This ensures that all the pre-processor directives (#define,
#include, #ifdef, etc.) are now expanded for the compilation process.
Primarily, a .i extension is used to indicate a fully expanded source code; this may
however differ in different toolchains.

Command: cpp [options] file ...

Compiling

The C compiler’s job is to convert a C file into the language that the computer can
understand. During compilation the compiler produces assembly code. The compiler
also optimises the code, either for size or for execution speed. When an executable
file is compiled for a different platform other than the one on which the compiler is
running, the compilation process is called cross-compilation. Almost all development

36 GNU ARM® Toolchain

environment for microcontrollers consists of cross-compilers since the host and
target machines are actually different. All compilers have command-line arguments
for specifying the target machine.

Command: gcc [options] file...

Assembling

The assembler translates the assembly program into relocatable object code (object
file). With this the object program is complete except for the exact memory addresses
to be assigned to the code and data sections. Object code is the sequence of
(suitably encoded) machine instructions that correspond to the C instructions that
the programmer has written.

Command: as [options] file...

Linking

The linker is responsible for creating the executable program by combining different
object files. A user program may refer to variables and functions that are declared in
some other file, say a library. When the compiler generates the object code for this
program, it will have generated a reference to the external variable or function. The
linker actually includes the external variables and functions as part of the executable
program, so that these external references are properly resolved. The output of the
linker generally has a .ld extension.

Command: ld [options] file...

3. IDE Plug-ins - These link the toolchain and the IDE. The toolchain can be viewed
as the back-end run by a visually appealing front-end, the IDE. The IDE and the
toolchain are connected by a plug-in which is responsible for connecting tools in the
toolchain to the front-end.

4. Flash Tool - Post the build process, the binary file generated by the toolchain needs to
be burned into the target board. Hardware manufacturers provide such software free
of cost with their kits. Many of these software are proprietary and hide the underlying
layer of communication between the hardware and the tool.

4.2 Programming Environment: Stellaris® Guru

The programming environment of the Stellaris® Guru is based on a blackbox model similar
to the one discussed above. Different software are integrated to get the whole environment
up and running,

Stellaris®ARM®Cortex™-M3 Lab Manual 37

• Eclipse as IDE for C/C++ Developers

Eclipse is an open source project comprising an integrated development environment
and a rich framework of plug-ins, all integrated to provide a complete
language-independent software development environment. Eclipse 4.2 (Juno) is the
latest release from the Eclipse Foundation. It provides a clean GUI-based interface
for writing and editing code, and can be linked to the Sourcery GNU ARM®

Toolchain using the GNUARM plug-in.

• Sourcery G++ GNU toolchain[8] for ARM® microprocessors

Hosted by Codesourcery, this GNU toolchain, also known as Sourcery CodeBench
Lite Edition, is available for download and use at no cost. All the tools except the
newlib C Library are licensed under the GNU Public License version 3 (GPL3).
The GNU C Library is licensed under the BSD License. Included in the GNU
toolchain are the binary utilities (binutils), the GNU Compiler Collection (GCC),
the GNU Remote Debugger (GDB), the GNU make and the GNU core utilities.
The Sourcery G++ Debug Sprite for ARM® and the Codesourcery common Startup
Code Sequence are licensed under the Codesourcery License. Also included in the
Sourcery G++ Lite package is extensive documentation of the GNU toolchain tools,
including the GNU Coding Standard document. The different commands invoked
during the build process with this toolchain are:

arm-none-eabi-cpp [options] file... Invokes Pre-Processor

arm-none-eabi-gcc [options] file... Invokes C Compiler

arm-none-eabi-g++ [options] file... Invokes C++ Compiler

arm-none-eabi-as [options] file... Invokes Assembler

arm-none-eabi-gdb [options] file... Invokes Debugger

Due to ARM’s popularity, different vendors have different toolchains with different
options to invoke the build steps. A detailed documentation accompanies each
toolchain and should be read as a prerequisite to build process.

• GNUARM Plug-in[9]

Developed as a part of an open source project, this plug-in helps in managing ARM®

projects within Eclipse. It also integrates the entire build process of a command-line
toolchain (Sourcery G++ Lite) into a visually appealing IDE. It runs on Microsoft
Windows, Linux and Apple Mac OS X.

38 GNU ARM® Toolchain

• Texas Instruments Development Package: (StellarisWare + USB to Serial

Drivers + LM Flash Programmer)

The Texas Instruments development package includes StellarisWare, Future
Technology Devices International (FTDI) USB-to-serial drivers[10] and the LM Flash
programmer. The StellarisWare library contains the Stellaris® Peripheral Driver
Library, USB and Graphics Library. The FTDI drivers are used for USB-serial
interaction with the target board. The LM Flash programmer is responsible for finally
burning the executable onto the Guru.

4.3 Setting up the Development Environment

Make sure you have installed all the software described in the previous section before

proceeding.

Figure 4.4 The Eclipse IDE

Fire up the Eclipse IDE.

A window similar to that shown in Figure 4.4 comes up.

1. Installing the GNU ARM® plug-in

(a) Go to Help - Install New Software - Add - Archive

(b) A window similar to that shown in Figure 4.5 comes up.

(c) Browse to the GNUARM plug-in zip file downloaded earlier.

(d) Click OK and Next to install the plug-in.

(e) A window similar to that shown in Figure 4.6 will appear.

Stellaris®ARM®Cortex™-M3 Lab Manual 39

2. Creating your first project:

(a) Go to File - New - C Project.

(b) Enter the project name. Make sure the selections are as shown in Figure 4.7.

(c) Click Next.

(d) Make sure the selection is same as shown in Figure 4.8.

(e) Then, press Finish.

Figure 4.5 Adding a plug-in repository to Eclipse

40 GNU ARM® Toolchain

Figure 4.6 Eclipse plug-in install options

3. Importing the existing file system

(a) Go to File - Import - General - File System.

(b) A window similar to that shown in Figure 4.10 will crop up.

(c) Press Next.

(d) Browse and select any project from the LM3S608 folder. Make sure that the
same options as shown in Figure 4.10 are selected.

(e) Press Finish.

Stellaris®ARM®Cortex™-M3 Lab Manual 41

Figure 4.7 New project window

So, we have now set up a new project and instructed the Eclipse IDE as to which
cross compiler to use for development.

Your screen should look similar to that shown in Figure 4.11.

42 GNU ARM® Toolchain

Figure 4.8 Project configuration window

4. Setting up project properties

(a) Go to Project Properties.
(b) Go to Settings - Tool Settings - ARM® Sourcery Windows GCC C Compiler -

Directories.

Stellaris®ARM®Cortex™-M3 Lab Manual 43

(c) Include the directory paths as shown in Figure 4.12 and Figure 4.13.

(d) In the Project Properties window, go to Tool Settings - ARM® Sourcery
Windows GCC C Compiler - Preprocessor, and define the symbol “gcc” as
shown in Figure 4.14.

Figure 4.9 Import window

44 GNU ARM® Toolchain

Figure 4.10 File system import window

Figure 4.11 Eclipse IDE window with imported project

Stellaris®ARM®Cortex™-M3 Lab Manual 45

Figure 4.12 Project properties window

Figure 4.13 Including StellarisWare directories

46 GNU ARM® Toolchain

Figure 4.14 Setting up the preprocessors

Figure 4.15 Setting up code optimisation

Stellaris®ARM®Cortex™-M3 Lab Manual 47

5. Setting up code optimisation

(a) In the Project Properties window, go to Tool Settings - ARM® Sourcery
Windows GCC C Compiler - Optimization.

(b) From the drop down menu next to Optimization Levels, select “None (-O0)”
and make selections as shown in Figure 4.15.

Figure 4.16 Configuring the location of the linker file

6. Including the linker

(a) In the Project Properties window, go to Tool Setting - ARM® Sourcery
Windows GCC C Linker - General.

(b) Browse and select the linker file copied to the workspace. In our case, it is
“main.ld”.

(c) Make sure the same options are selected as shown in Figure 4.16.

7. Adding the libraries

(a) In the Project Properties window go to Tool Setting - ARM® Sourcery
Windows GCC C Linker - Libraries.

(b) Select Add Directory Path. A window similar to that shown in Figure 4.17 will
be displayed.

(c) Add the following directory path of your Driver Library and the library
‘driver-cm3’ as shown in Figure 4.18.
C:/StellarisWare/driverlib/gcc-cm3

48 GNU ARM® Toolchain

Fig. 4.17 Adding a directory path

Figure 4.18 Properties windows with directory path included

Stellaris®ARM®Cortex™-M3 Lab Manual 49

8. Include source location

(a) In the Project Properties window, go to C/C++ General - Paths and Symbols -
Source Location - Link Folder.

(b) Include the driverlib and utilsfolder, which contain the C source files. These
are placed inside the StellarisWare folder in the C: drive. This is shown in
Figure 4.19 and Figure 4.20.

(c) Include the files as shown in Figure 4.21 and select Apply.

Figure 4.19 Paths and Symbols configuration

9. Post-build steps

(a) In the Project Properties window, go to C/C++ Build - Settings - Build Steps -
Post Build Steps Command and type the following:

arm-none-eabi-objcopy -S -O binary

"ProjName.elf" "ProjName.bin"

(b) Your window should look similar to that shown in Figure 4.22.

(c) Press OK.

After returning to the main Eclipse IDE window, in your workspace, select main.c.
Your screen should look similar to that shown in Figure 4.23.

50 GNU ARM® Toolchain

Figure 4.20 Defining the link folder

Figure 4.21 Paths and Symbols window with linked folders

Stellaris®ARM®Cortex™-M3 Lab Manual 51

Fig. 4.22 Post-build steps configuration

Figure 4.23 Main Eclipse IDE window with configured project

Right click on the project opened in the workspace, go to Build Configurations and
first build the project and then clean the project shown in Figure 4.24. If everything
goes right, it will build and clean with ease.

52 GNU ARM® Toolchain

Figure 4.24 Build and clean project

Figure 4.25 External tool configuration

10. Integrating LM Flash programmer with Eclipse IDE

(a) Go to Run - External Tools - External Tools Configuration as shown in
Figure 4.25.

(b) A window similar to that shown in Figure 4.26 should be displayed.

Stellaris®ARM®Cortex™-M3 Lab Manual 53

(c) In the window, set the location to LMFlash.exe located under “C:/Program
Files/Texas Instruments/”

(d) Clicking Run launches the LM Flash programmer.

Figure 4.26 External tool configuration

(e) After clicking on Run, a window similar to that shown in Figure 4.25 should
display on the screen. This is the LM Flash programmer.

(f) In the configuration tab, choose the COM port depending on the port the device
is attached to.

(g) Go to the Program tab, and select the .bin file by browsing your project in the
Eclipse workspace folder.

(h) Choose the same options as shown in Figure 4.28 with the same parameters.
Make sure the address offset is 0x800.

54 GNU ARM® Toolchain

Figure 4.27 LM Flash Programmer (Configuration tab)

11. Uploading code to board

(a) To upload your application program to the Stellaris® Guru kit, you need to
get the kit in the “Program Update” mode. Pressing the Reset and S2 switches
simultaneously and then releasing the Reset switch followed by S2 brings the
microcontroller on the Stellaris® Guru kit in the program update mode.

(b) Clicking on Program starts transferring the application binary file to the
Stellaris® Guru board as shown in Figure 4.29.

If you followed the earlier steps correctly, you have just programmed your very first
ARM®-powered microcontroller. Congratulations!

Stellaris®ARM®Cortex™-M3 Lab Manual 55

Figure 4.28 LM Flash Programmer (Program tab)

Figure 4.29 Programming the target

5 Anatomy of a C Program

This chapter describes the basic structure of a C program for Stellaris MCU. Although the
chapter presents a general structure of a program, it can be adopted for all experiments in
this book. A typical C program for microcontrollers consists of the following parts.

1. Header Files - This part of the program lists out all the files that are to be included
on compilation of the program. For example, #include inc/lm3s608.h

2. System Initialisation - All the clock selections, phase locked loop (PLL) synthesis
and frequency selection is done in this segment of your C code. It is the most vital part
of your program without which the other segments will fail to function. For example,
the function SysCtlClockSet() (discussed in the next chapter) comes here.

3. Peripheral Initialisation - Suppose the experiment requires us to toggle a pin on a
General-Purpose Input/Output(GPIO) port. Before toggling the pin, it is required to
enable the GPIO peripheral and set its data direction, i.e., as an input or an output.
The enabling of peripherals and its functions is done in this part of the C program.
For example, SYSCTL_RCGC2_R = SYSCTL_RCGC2_GPIOC enables GPIO port C.

4. Peripheral Configuration - This part of the program is used to set
individual configuration bits for a selected register or GPIO port. For example,
GPIO_PORTC_DIR_R | = 0x80; configures the data direction of Bit 7 of port
C as output and all the other bits of port C as inputs. Such a type of peripheral
configuration is often referred to as bit-packed representation.[11]

5. Application Loop - Once the clock is enabled and peripherals are configured, it now
time to jump to the main application of the code. This code is usually repeated in a
loop over the entire execution cycle.

For convenience, the program flow diagram for the experiments included in this manual
have been drawn in such a way as to segregate each of these subsections of the general
C program. To further illustrate the functional parts of a C program, let us write some

56

Stellaris®ARM®Cortex™-M3 Lab Manual 57

applications concerned with GPIO ports using the the Register Access Model, where we
access individual peripheral registers to toggle individual bits.

5.1 Example

The GPIO module on the LM3S608 is composed of five physical GPIO blocks, each
corresponding to an individual GPIO port (Port A, Port B, Port C, Port D and Port E).
The GPIO module supports 5-28 GPIO pins depending on the peripherals being used. Each
GPIO pin has the following capabilities:

• Can be configured as an input or output port. On reset, they default to being an input,
with the exception of the five JTAG pins.

• 5 V-tolerant in input configuration
• In input mode, can generate interrupts on low level, high level, rising edge, falling

edge or both edges.
• Pins configured as inputs are Schmitt-triggered.
• Fast toggle capable of a change every two-clock cycle.
• Optional weak pull-up or pull-down resistors.
• Optional open-drain configuration. On reset, they default to standard push/pull

configuration.
• Can be configured to be a GPIO or a peripheral pin. On reset, they default to being

GPIOs.

The block diagram of the GPIO module on the LM3S608 is showm in Figure 5.1.

5.2 Experiment 1

5.2.1 Objective

To blink the LED, LD5, connected to PC7 on the Stellaris® Guru kit.

5.2.2 Program Flow

This program requires us to blink the LED connected to a pin on a GPIO port. The block
diagram for the experiment is shown in Figure 5.2. The standard algorithm to be followed
is:

1. Enable the system clock and the GPIO port.
2. Set the direction of the data register to input or output. In our case, it will be output.
3. Alternately set and reset the data bit driving the LED in order to generate a blinking

effect.

58 Anatomy of a C Program

Figure 5.1 GPIO module

Figure 5.2 Block Diagram for Experiment 1. The delay is generated using a for loop. PC7 is Pin 7

of port C.

Stellaris®ARM®Cortex™-M3 Lab Manual 59

Figure 5.3 shows a suggested program flow for the experiment.

Figure 5.3 Program flow for Experiment 1

5.2.3 Register Accesses

To use the register access model, include the header file inc/lm3s608.h. This header file
contains all the definitions and macros for using all the peripheral registers in LM3S608.

The registers that need to be accessed for system configuration and digital output are:

GPIO Data Register on Port C - GPIO_PORTC_DATA_R

GPIO Alternate Access Register on Port C - GPIO_PORTC_AFSEL_R

GPIO Direction Register on Port C - GPIO_PORTC_DIR_R

GPIO Digital Enable Register on Port C - GPIO_PORTC_DEN_R

60 Anatomy of a C Program

5.2.4 Program Code

The complete C program code for the experiment is given below. The program has been
broken up into segments with well-commented statements.

#include "inc/lm3s608.h"

int main(void)

{

//

// Delay Loop Variable

define DELAYVALUE 200000

unsigned long ulLoop;

//

// Enable Clocking to the GPIO port that is used for the on-board

// LED.

//

SYSCTL_RCGC2_R = SYSCTL_RCGC2_GPIOC;

//

// Do a dummy read to insert a few cycles after enabling the

// peripheral.

//

ulLoop = SYSCTL_RCGC2_R;

//

// Enable the GPIO pin for the LED (PC7). Set the direction as

// output, and enable the GPIO pin for digital function. Care is

// taken to not disrupt the operation of the JTAG pins on PC0-PC3.

//

GPIO_PORTC_DIR_R |= 0x80;

GPIO_PORTC_DEN_R |= 0x80;

GPIO_PORTC_AFSEL_R = 0x00;

//

// Application Loop

//

while(1)

{

//

// Turn off the LED.

//

GPIO_PORTC_DATA_R |= 0x80;

Stellaris®ARM®Cortex™-M3 Lab Manual 61

//

// Delay for 100 ms.

//

for(ulLoop = 0; ulLoop < DELAYVALUE; ulLoop++)

{

}

//

// Turn on the LED.

//

GPIO_PORTC_DATA_R &= ~(0x80);

//

// Delay for 100 ms.

//

for(ulLoop = 0; ulLoop < DELAYVALUE; ulLoop++)

{

}

}

}

5.3 Experiment 2

5.3.1 Objective

To use switch S2 connected to PE0 as an input and turn the LD5 connected to PC7 on/off
whenever the switch is asserted.

5.3.2 Program Flow

Lighting up an LED whenever a switch is asserted is the aim of this experiment. Whenever
we press switch S2 on PE0, the LED connected to PC7 should light up, and it should turn off
when switch is de-asserted. The block diagram for the experiment is shown in Figure 5.4.
Building on the algorithm from the previous experiment, we can write the new algorithm
for the experiment as:

1. Enable the system clock and the GPIO ports C and E.
2. Set the direction of the data register to input or output. In our case, port C will be set

to output and port E will be set to input.
3. Set the individual bits which are to be on both the ports.
4. Wait for PE0 to be asserted.
5. When pin PE0 is asserted, turn on the LED LD5 connected to PC7. When PE0 is

de-asserted, turn off LD5. The turning on/off can be controlled by writing suitable
values to the data register of the GPIO port C.

62 Anatomy of a C Program

The program flow for this experiment is shown in Figure 5.5.

Figure 5.4 Block diagram for Experiment 1. This method is also known as the polling method.

Figure 5.5 Program flow for Experiment 2

Stellaris®ARM®Cortex™-M3 Lab Manual 63

5.3.3 Register Accesses

To use the register access model, include the header file inc/lm3s608.h. This header file
contains all the definitions and macros for using all the peripheral registers in LM3S608.

For the LED, the registers accessed are:

GPIO Data Register on Port C - GPIO_PORTC_DATA_R

GPIO Alternate Access Register on Port C - GPIO_PORTC_AFSEL_R

GPIO Direction Register on Port C - GPIO_PORTC_DIR_R

GPIO Digital Enable Register on Port C - GPIO_PORTC_DEN_R

For the switch, the following registers are accessed.

GPIO Data Register on Port E - GPIO_PORTE_DATA_R

GPIO Alternate Access Register on Port E - GPIO_PORTE_AFSEL_R

GPIO Direction Register on Port E - GPIO_PORTE_DIR_R

GPIO Digital Enable Register on Port E - GPIO_PORTE_DEN_R

GPIO Pull-up Enable Register on Port E - GPIO_PORTE_PUR_R

5.3.4 Program Code

#include "inc/lm3s608.h"

int main(void)

{

//

// Dummy variable

//

unsigned long ulLoop;

//

// Enable clocking to the GPIO port that is used for the on-board

// LED.

//

SYSCTL_RCGC2_R = SYSCTL_RCGC2_GPIOC | SYSCTL_RCGC2_GPIOE;

//

// Do a dummy read to insert a few cycles after enabling the

// peripheral.

//

ulLoop = SYSCTL_RCGC2_R;

//

// Enable the GPIO pin for the LED (PC7). Set the direction as

// output, and enable the GPIO pin for digital function. Care is

// taken to not disrupt the operation of the JTAG pins on PC0-PC3.

64 Anatomy of a C Program

//

GPIO_PORTC_DIR_R |= 0x80;

GPIO_PORTC_DEN_R |= 0x80;

GPIO_PORTC_AFSEL_R = 0x00;

//

// Set configuration for the GPIO E Peripheral.

//

GPIO_PORTE_DIR_R &= ~(0x01);

GPIO_PORTE_DEN_R |= 0x01;

GPIO_PORTE_AFSEL_R = 0x00;

//

// Pulling up PE0 Pin

//

GPIO_PORTE_PUR_R |= 0x01;

//

// Application

//

while(1)

{

//

// If the Button is Pressed

//

if(((GPIO_PORTE_DATA_R) & (0x01)) != (0x01))

{

//

// LED is on

//

GPIO_PORTC_DATA_R &= ~(0x80);

}

else

{

//

// LED is off

//

GPIO_PORTC_DATA_R |= 0x80;

}

}

}

6 StellarisWare API

This chapter introduces the reader to the StellarisWare application programming interface
(API). Also discussed are two of the most common programming models used with this
layer of abstraction.

6.1 StellarisWare Peripheral Driver Library: A Layer of
Abstraction

The StellarisWare Peripheral driver library provided by Texas Instruments is a set of drivers
for accessing the peripherals found on the Stellaris family of ARM® Cortex™-M based
microcontrollers. The driver library, as shown in Figure 6.1, acts as a layer of abstraction
for programmers and exposes only the functions of the library without going deeper into
the lower-level working of the controller. This speeds up the development of end user
applications.

Figure 6.1 Layers of abstraction

65

66 StellarisWare API

6.2 Features of the StellarisWare Peripheral Driver Library

• Simplifies and speeds up the development of applications.
• Free license and royalty-free use.
• The high-level API interface includes all peripherals.
• Available as object library and as source code.
• Compiles across toolchains, ARM®/Keil[12], IAR[13], Code Red[14], CCS[15] and

GNU tools.
• Peripheral driver library functions are pre-programmed in ROM for select Stellaris®

MCU.
• Includes drivers for all classes of Stellaris® MCUs.

6.3 Programming Models

The peripheral driver library provides support for two programming models: the direct

register access model and the software driver model. Each model can be used independently
or can be combined, based on the need of the application or the programming environment.
Each programming model has its advantages and disadvantages. The use of direct register
access model generally results in smaller and more efficient code than with software driver
model. However, the direct register access model requires a detailed knowledge of the
operation of each register, each bit field and interactions, and any sequencing required
for the proper operation of the peripheral. In the software driver model, the developer is
insulated from these details, and it generally takes lesser time to develop applications using
this model.

6.3.1 Direct Register Access Model

We have already used the direct register access model programming model in developing
the programs of Chapter 5. Here the values are directly written into the peripheral registers.
The inc directory includes part-specific header files for different Stellaris® MCUs
containing macros mapping peripherals to their corresponding addresses. For example, the
header file for the LM3S608 microcontroller is inc/lm3s608.h. The following naming
conventions used in the model make it convenient for for use.

• Macro definitions ending in _R are used to access the value of the register. For
example,

GPIO_PORTA_DATA_R is used to access the data register for the GPIO port A.

• Macro definitions ending in _M are used for masking multiple-bit field values in a
register.

Stellaris®ARM®Cortex™-M3 Lab Manual 67

• Macro definitions ending in _S represent the number of bits to shift in order to align
it with a multi-bit field. These values match the macro with the same base name but
ending with _M.

• Other macro definitions represent the value of the bit-field. All register bit fields start
with the module name.

• Macro definitions mapping onto peripheral devices containing the module name
and instance number. For example, use SSI0 for the first SSI (serial synchronous
interface) module, followed by the name of registers as it appears in the data sheet.

For example,

1. The following statement will set the pin PD5 to HIGH.

GPIO_PORTD_DATA_R |= 0x20;

2. The following code will read and return the values from PD4-PD7.

return (GPIO_PORTD_DATA_R >> 4);

6.3.2 Software Driver Model

The software driver model uses the API provided by the peripheral driver library to
control all the peripherals present in the Stellaris® MCUs. The API provides the capability
to write complete applications using only pre-built functions, which helps in reducing
the application development time. However, when compared to the direct register access
model, the software driver model is not as efficient but enables rapid development of
applications without requiring a knowledge of the low-level details of the operation of
the peripherals. All example codes in this manual follow the software driver model. The
functions of the API will be discussed as and when the need arises.

6.3.3 Using Both Models

Both the programming models mentioned above can be mixed in the same program, if
necessary, to benefit from both of them. As mentioned above, the software driver model
reduces the development time by hiding the low-level details of the peripherals, while the
direct register access model will lead to programs that are faster and more space-efficient. A
recommended practice is to use the direct register access model for the performance-critical
portions of the code.

6.4 Useful StellarisWare API Function Calls

6.4.1 SysCtlClockSet

This sets the clocking of the device.

68 StellarisWare API

Prototype: void SysCtlClockSet(unsigned long ulConfig)

Parameters: ulConfig is the required configuration of the device clocking.

Description: This function configures the clocking of the device and all of the following
can be specified using this function—the crystal frequency, the oscillator to be used, the
usage of the on-chip PLL and the system clock divider. The ulConfig parameter is the
logical OR of several different values, many of which are grouped into sets where only one
can be specified. The system clock divider is specified with one of the following values:
SYSCTL_SYSDIV_1, SYSCTL_SYSDIV_2,

SYSCTL_SYSDIV_3, SYSCTL_SYSDIV_64.

Table 6.1 summarises the system divider and the clock settings.

Tabble 6.1 System divider and clock settings

SYSDIV Divisor Frequency StellarisWare parameter

0x0 /1 Reserved SYSCTL_SYSDIV_1

0x1 /2 Reserved SYSCTL_SYSDIV_2

0x2 /3 Reserved SYSCTL_SYSDIV_3

0x3 /4 50 MHz SYSCTL_SYSDIV_4

0x4 /5 40 MHz SYSCTL_SYSDIV_5

0x5 /6 33.33 MHz SYSCTL_SYSDIV_6

0x6 /7 28.57 MHz SYSCTL_SYSDIV_7

0x7 /8 25 MHz SYSCTL_SYSDIV_8

0x8 /9 22.22 MHz SYSCTL_SYSDIV_9

0x9 /10 20 MHz SYSCTL_SYSDIV_10

0xA /11 18.18 MHz SYSCTL_SYSDIV_11

0xB /12 16.67 MHz SYSCTL_SYSDIV_12

0xC /13 15.38 MHz SYSCTL_SYSDIV_13

0xD /14 14.29 MHz SYSCTL_SYSDIV_14

0xE /15 13.33 MHz SYSCTL_SYSDIV_15

0xF /16 12.5 MHz (default) SYSCTL_SYSDIV_16

The use of the PLL is opted for with either SYSCTL_USE_PLL or SYSCTL_USE_OSC.
The external crystal frequency is chosen with one of the following values:

SYSCTL_XTAL_1 MHZ, SYSCTL_XTAL_1_84 MHZ,

SYSCTL_XTAL_2 MHZ, SYSCTL_XTAL_2_45 MHZ,

SYSCTL_XTAL_3_57 MHZ, SYSCTL_XTAL_4 MHZ,

SYSCTL_XTAL_4_09 MHZ among others.

The oscillator is chosen with one of the following values:

Stellaris®ARM®Cortex™-M3 Lab Manual 69

SYSCTL_OSC_MAIN, SYSCTL_OSC_INT,

SYSCTL_OSC_INT4, SYSCTL_OSC_INT30, or
SYSCTL_OSC_EXT32

To clock the system from an external source (such as an external crystal oscillator), use
SYSCTL_USE_OSC | SYSCTL_OSC_MAIN. To clock the system from the main oscillator,
use SYSCTL_USE_OSC | SYSCTL_OSC_MAIN. To clock the system from the PLL, use
SYSCTL_USE_PLL | SYSCTL_OSC_MAIN, and select the appropriate crystal with one of
the SYSCTL_XTAL_xxx values.

Returns:

None

6.4.2 SysCtlClockGet

This gets the processor clock rate.

Prototype: unsigned long SysCtlClockGet(void)

Description: This function determines the clock rate of the processor, which is also the
clock rate of the peripheral modules (with the exception of PWM, which has its own clock
divider; some other peripherals too may have different clocking. See the device data sheet
for details).

Note: This cannot return accurate results if SysCtlClockSet() has not been called to
configure the clocking of the device, or if the device is directly clocked from a crystal (or
a clock source) that is not one of the supported crystal frequencies. In the latter case, this
function should be modified to directly return the correct system clock rate.

Returns: The processor clock rate.

6.4.3 SysCtlPeripheralEnable

Enables a peripheral.
Prototype: void SysCtlPeripheralEnable(unsigned long ulPeripheral)

Parameters: ulPeripheral is the peripheral to enable.

Description: This function enables peripherals. At power-up, all peripherals are
disabled; they must be enabled in order to perform or respond to register reads/writes.
The ulPeripheral parameter must be one of the following values only:

SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,

SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1,

SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,

70 StellarisWare API

SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,

SYSCTL_PERIPH_EEPROM0,

SYSCTL_PERIPH_EPI0,

SYSCTL_PERIPH_ETH etc.,

The parameter depends on the microcontroller in use, and the device datasheet should be
consulted before programming.

Returns: None

6.4.4 SysCtlDelay

This provides a small delay.

Prototype: void SysCtlDelay(unsigned long ulCount)

Parameters: ulCount is the number of delay loop iterations to perform.

Description: This function provides a means of generating a desired delay of up to 232
×

3 clock cycles, where 232 is the size of unsigned long. The routine is written in assembly
language to keep the delay consistent across tool chains, avoiding the need to tune the delay
based on the toolchain. It takes 3 cycles/loop.

Returns: None.

6.4.5 SysCtlReset

Resets the device.

Prototype: void SysCtlReset(void)

Description: This function performs a software reset of the entire device. The processor
and all peripherals are reset and all device registers are returned to their default values
(with the exception of the reset cause register, which maintains its previous value but has
the software reset bit set as well).

Returns: None

6.4.6 IntMasterEnable

This enables the processor interrupt.

Prototype: tBoolean IntMasterEnable(void)

Description: This function allows the processor to respond to interrupts. It does not
affect the set of interrupts enabled in the interrupt controller but just gates the single
interrupt from the controller to the processor.

Stellaris®ARM®Cortex™-M3 Lab Manual 71

Returns: True if interrupt-enabled.

6.4.7 GPIOPinRead

This reads the values present of the specified pin(s).

Prototype: long GPIOPinRead(unsigned long ulPort, unsigned char ucPins)

Parameters: ulPort is the base address of the GPIO port. ucPins is the bit-packed
representation of the pin(s).

Description: The values at the specified pin(s) are read, as specified by ucPins. Values
are returned for both input and output pin(s), and the value for pin(s) that are not specified
by ucPins are set to 0. The pin(s) are specified using a bit-packed byte, where each bit that
is set identifies the pin to be accessed, and where bit 0 of the byte represents GPIO port pin
0, bit 1 represents GPIO port pin 1, and so on.

Returns: A bit-packed byte providing the state of the specified pin, where bit 0 of the byte
represents pin 0 of the GPIO port, bit 1 represents pin 1 of the GPIO port, and so on. Any
bit that is not specified by ucPins is returned as a 0. Bits 31:8 should be ignored.

7 Digital Input/Output

This chapter revisits the two experiments performed in Chapter 5 and implements them
using calls to the StellarisWare API rather than the register access model used earlier.
It is left to the reader to use any programming paradigm in future experiments listed in
this manual. There are other experiments provided in this chapter that utilise digital I/O
concepts to control intensity of LEDs and using LED as a light sensor.

7.1 Experiment 3

7.1.1 Objective

Make the LED (LD5) connected to PC7 on the Stellaris® Guru development kit blink with
a delay of 100 milliseconds.

7.1.2 Program Flow

This program requires that the LED connected to a pin on a GPIO port blink. The block
diagram for the experiment is shown in Figure 7.1. The standard algorithm to be followed
is:

1. Enable the system clock and the GPIO port.

2. Set the direction of the data register as output. In our case, it will be output.

3. Set and reset the data bit for the pin alternately with a delay to generate a blinking
pattern.

Figure 7.2 shows a suggested program flow for the experiment.

.

72

Stellaris®ARM®Cortex™-M3 Lab Manual 73

Figure 7.1 Block diagram for Experiment 3. Delays are generated using SysCtlDelay

Figure 7.2 Program flow for Experiment 3

74 Digital Input/Output

7.1.3 Suggested StellarisWare API Function Calls

The functions used to drive the GPIO port are contained in driverlib/gpio.c, with
driverlib/gpio.h containing the API definitions for use by applications.

• GPIOPinTypeGPIOOutput - Configures the pin(s) for use as GPIO Outputs.

Prototype: void GPIOPinTypeGPIOOutput(unsigned long ulPort, unsigned
char ucPins)

Parameters: ulPort is the base address of the GPIO port. ucPins is the bit-packed
representation of the pin(s).

Description: The GPIO pins must be properly configured in order to function
correctly as GPIO outputs. The pin(s) are specified using a bit-packed byte, where
each bit that is set identifies the pin to be accessed, and where bit 0 of the byte
represents GPIO port pin 0, bit 1 represents GPIO port pin 1, and so on.

Returns: None

• GPIOPinWrite - Writes a value to the specified pin(s)

Prototype: void GPIOPinWrite (unsigned long ulPort, unsigned
char ucPins, unsigned char ucVal)

Parameters: ulPort is the base address of the GPIO port. ucPins is the
bit-packed representation of the pin(s). ucVal is the value to write to the pin(s).

Description: Writes the corresponding bit values to the output pin(s) specified by
ucPins. Writing to a pin configured as an input pin has no effect.

Returns: None

7.1.4 Program Code

The complete C program code for the experiment is given below. The program has been
broken up in to segments with well-commented statements. This programming model may
be used for all subsequent experiments.

//

// Defines the base address of the memories and peripherals

//

#include "inc/hw_memmap.h"

//

// Defines the common types and macros

//

Stellaris®ARM®Cortex™-M3 Lab Manual 75

#include "inc/hw_types.h"

//

// Defines and Macros for GPIO API

//

#include "driverlib/gpio.h"

//

// Prototypes for the system control driver

//

#include "driverlib/sysctl.h"

int main(void)

{

//

// System Initialization Statements

// Set the clocking to directly run from the crystal at 8MHz */

//

SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN

| SYSCTL_XTAL_8MHZ);

//

// Peripheral Initialization Statement

// Set the clock for the GPIO Port C

//

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);

//

// Peripheral Configuration Statement

// Set the type of the GPIO Pins

//

GPIOPinTypeGPIOOutput(GPIO_PORTC_BASE, GPIO_PIN_7);

//

// GPIO Pin 7 on PORT C initialized to High, LD5 Off

//

GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_7, GPIO_PIN_7);

//

// Application Loop

//

while(1)

{

//

// Make Pin Low

76 Digital Input/Output

//

GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_7, 0);

//

// Delay for 100ms

//

SysCtlDelay(SysCtlClockGet()/100);

//

// Make Pin High

//

GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_7, GPIO_PIN_7);

//

// Delay for 100ms

//

SysCtlDelay(SysCtlClockGet()/100);

}

}

7.2 Experiment 4

7.2.1 Objective

Use switch S2 connected to PE0 as an input and make LD5 on PC7 blink whenever the
switch is asserted.

7.2.2 Program Flow

Lighting up an LED whenever a switch is asserted is the aim of this experiment. Whenever
we press switch S2 on PE0, the LED connected to PC7 should light up; it should turn
off when the switch is de-asserted. The block diagram for the experiment is shown in
Figure 7.3. Building on the algorithm from the previous experiment, we can write a new
algorithm as:

1. Enable the system clock and the GPIO ports C and E.
2. Set the direction of the data register to input or output. In our case, it will be output

for port C and input for E.
3. Set individual bits which are to be on both the ports.
4. Wait for PE0 to be asserted.
5. When asserted, turn on LED on PC7 and when de-asserted, turn off LED on PC7 by

writing to the data register of GPIO port C.

Stellaris®ARM®Cortex™-M3 Lab Manual 77

Figure 7.3 Block diagram for Experiment 4. This method is also known as the Polling Method.

The program flow for this experiment is shown in Figure 7.4.

7.2.3 Suggested StellarisWare API Function Calls

• GPIOPinTypeGPIOInput Configures the pin(s) as GPIO inputs.

Prototype: void GPIOPinTypeGPIOInput (unsigned long ulPort, unsigned
char ucPins);

Parameters: ulPort is the base address of the GPIO port. ucPins is the bit-packed
representation of the pin(s).

Description: The GPIO pins must be properly configured in order to function
correctly as GPIO inputs.

Returns: None

• GPIOPadConfigSet Sets the pad configuration for the specified pin(s).

Prototype:

void GPIOPadConfigSet (unsigned long ulPort, unsigned char ucPins,
unsigned long ucStrength, unsigned long ulPinType)

Parameters: ulPort is the base address of the GPIO port. ucPins is the
bit-packed representation of the pin(s). ulStrength specifies the output drive
strength. ulPinType specifies the pin type.

Description: This function sets the drive strength, type and pull-up/pull-down
configuration for the specified pin(s) on the selected GPIO port. The parameter
ulStrength can be one of the following values:

78 Digital Input/Output

Figure 7.4 Program flow for Experiment 4

GPIO_STRENGTH_2MA, GPIO_STRENGTH_4MA,

GPIO_STRENGTH_8MA, GPIO_STRENGTH_8MA_SC,

where, GPIO_STRENGTH_xMA specifies either 2, 4, or 8 mA output drive strength,
and GPIO_OUT_STRENGTH_8MA_SC specifies 8 mA output drive with slew control.

The parameter ulPinType can take one of the following values:

GPIO_PIN_TYPE_STD_WPD,= GPIO_PIN_TYPE_OD

GPIO_PIN_TYPE_STD, GPIO_PIN_TYPE_STD_WPU

GPIO_PIN_TYPE_OD_WPU, GPIO_PIN_TYPE_OD_WPD

where,
GPIO_PIN_TYPE_STD* specifies a push-pull pin, GPIO_PIN_TYPE_OD* specifies
an open-drain pin, *_WPU specifies a weak pull-up and *_WPD specifies a weak
pull-down.

Stellaris®ARM®Cortex™-M3 Lab Manual 79

Returns: None

• GPIOPinRead Reads the value present of the specified pin(s).

Prototype: long GPIOPinRead(unsigned long ulPort, unsigned char ucPins);

Parameters: ulPort is the base address of the GPIO port. ucPins is the bit-packed
representation of the pin(s).

Description: The values at the specified pin(s) are read, as specified by ucPins.

Returns: Returns a bit-packed byte providing the state of the specified pin, where bit
0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port pin 1, and so on.
Any bit that is not specified by ucPins is returned as a 0. Bits 31:8 should be ignored.

7.2.4 Program Code

// Defines the base address of the memories and peripherals

//

#include "inc/hw_memmap.h"

//

// Defines the common types and macros

//

#include "inc/hw_types.h"

//

// Defines and Macros for GPIO API

//

#include "driverlib/gpio.h"

//

// Prototypes for the system control driver

//

#include "driverlib/sysctl.h"

int main(void)

{

//

// System Initialization

// Set the clocking to directly run from the crystal at 8MHz

SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN

| SYSCTL_XTAL_8MHZ);

//

// Peripheral Initialization

// Set the clock for the GPIO Port C and Port E

//

80 Digital Input/Output

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

//

// Peripheral Configuration

// Set the type of the GPIO Pin

//

GPIOPinTypeGPIOOutput(GPIO_PORTC_BASE, GPIO_PIN_7);

GPIOPinTypeGPIOInput(GPIO_PORTE_BASE,GPIO_PIN_0);

//

// Configure GPIO pad with internal pull-up enabled for PE0

//

GPIOPadConfigSet(GPIO_PORTE_BASE, GPIO_PIN_0, GPIO_STRENGTH_2MA,

GPIO_PIN_TYPE_STD_WPU);

//

// GPIO Pin 7 on PORT C initialized to High, LD5 Off

//

GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_7, GPIO_PIN_7);

//

// Application Loop

//

while(1)

{

//

// Check if PE0 is high

//

if(GPIOPinRead(GPIO_PORTE_BASE, GPIO_PIN_0)==GPIO_PIN_0)

{

//

// Make PC7 high, i.e. turn off LED

//

GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_7, GPIO_PIN_7);

}

else

{

//

// Make PC7 Low, i.e., turn on LED

//

GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_7, 0);

}

}

}

Stellaris®ARM®Cortex™-M3 Lab Manual 81

7.3 Experiment 5

7.3.1 Objective

To make LEDs LD5(PC7), LD6(PC6) and LD7(PC5) blink in a controlled pattern.

7.3.2 Program Flow

In this experiment, let us play with the LEDs. The experiment requires us to make the
LEDs blink in a pattern. Unlike the previous experiments where we controlled only a single
LED by making it blink continuously, this experiment will allow us to control three LEDs
together. The choice of pattern is up to the reader. Figure 7.5 shows the block diagram of
the setup required for this experiment. A suggested algorithm for the experiment is:

1. Enable the system clock and GPIO port C.
2. Set data direction as output for PC5, PC6 and PC7.
3. Set PC5 High for 1 second.
4. Set PC6 High and make PC5 Low for 1 second.
5. Set PC7 High and make PC6 Low for 1 second.
6. Repeat to generate a beautiful pattern.

Figure 7.5 Block diagram for Experiment 5

A suggested program flow for the experiment is shown in Figure 7.6.

82 Digital Input/Output

Figure 7.6 Program flow for Experiment 5

7.4 Experiment 6

7.4.1 Objective

To control the intensity of LED LD5 connected to PC7 using PWM implemented in
software.

Stellaris®ARM®Cortex™-M3 Lab Manual 83

7.4.2 Program Flow

In all the experiments we have encountered so far, either the LED is ON or it is OFF.
You may have seen an LED turn ON and OFF gradually over a prolonged period of
time with its intensity varying from a minimum to a maximum (like Cylon’s eyes in
Battlestar Galactica for one!). Pulse width modulation allows us to control intensity by
varying the on and off periods of a square waveform. For example, we achieve a 25%
duty cycle, i.e., one-fourth the maximum intensity when the high period is one-third the
off period or the high period is one-fourth the time period of the waveform. To achieve
50% duty cycle, an equal high and low periods or, a high period half the time period
of the waveform is suitable. In this experiment, we control the intensity of LD5 using
PWM techniques implemented in software by using variable delays to achieve different
duty cycles. Hardware implementation of PWM is explained later in Chapter 9. We turn on
the LED until it achieves its full intensity and then gradually dim it. Figure 7.7 shows the
block diagram of the setup required for this experiment. The algorithm we follow for this
experiment is:

1. Enable the system clock and GPIO port C.
2. Set data direction as output for PC7.
3. Create a variable whose value is incremented in every iteration of the loop, and the

delay generated is proportional to the delay for the ON period.
4. Set PC7 High for a duration proportional to the value in the variable.

Figure 7.7 Block diagram for Experiment 6

84 Digital Input/Output

Figure 7.8 Program flow for Experiment 6

Stellaris®ARM®Cortex™-M3 Lab Manual 85

5. Set PC7 Low for a duration equal to OFF period (= Time period - ON period).
6. Increment the counter and repeat until OFF period is equal to zero.
7. Now decrement the counter and decrease the delay time.
8. Toggle the LEDs in the same manner until the ON period is equal to zero.

The program flow for the experiment is shown in Figure 7.8.

7.5 Experiment 7

7.5.1 Objective

To mimic light intensity sensed by the LED light sensor LD2(PD1) by varying the blinking
rate of LED LD5(PC7).

7.5.2 Program Flow

We use an LED to measure ambient light intensity. Depending on the magnitude of the
ambient light, we make LD5 blink at a rate proportional to it. For example, when the
ambient light intensity is low, the LED blinks at a rate of 5 blinks/second, say, and when
the intensity is higher, the LED blinks at 50 blinks/second. Figure 7.9 shows the block
diagram of the setup required for this experiment. An algorithm which can be followed for
the experiment is:

1. Enable the system clock and the GPIO ports C and D.
2. Set data direction of PC7 and PD1 as output.
3. Make PD1 High.

Figure 7.9 Block diagram for Experiment 7

86 Digital Input/Output

4. After a short delay, change data direction of pin PD1 to input.
5. Start a counter and count until voltage on PD1 goes Low.
6. The value in the counter is proportional to the ambient light intensity.
7. Make LD5 blink at a rate proportional to the ambient light.

A suggested program flow for the experiment is shown in Figure 7.10.

Figure 7.10 Program flow for Experiment 7

7.6 Generating Random Numbers

Many applications require random numbers. While it is almost impossible to generate
a truly random number, one can generate a pseudo-random number using a variety of
methods.

Stellaris®ARM®Cortex™-M3 Lab Manual 87

Figure 7.11 An 8-bit linear feedback shift register with taps at bit positions 1, 2, 3 and 7

One popular way to generate a pseudo-random number is to read the contents of a
free-running counter. This is a simple scheme and can be easily implemented on the ARM®

controller with no extra hardware. One of the available timers (or Timer1) can be clocked
at a certain clock frequency derived from the system clock. Then, whenever a random
number is required, the contents of the timer register can be read and the value that you get
is a a pseudo-random number. This scheme is quite suitable in situations where the reading
process is asynchronous to the activity on the microcontroller, such as a user pressing a
switch to read a random number.

Another way to generate a pseudo-random number is to use the concept of Linear
Feedback Shift Register (LFSR). LFSRs are ordinary shift registers with some outputs
(called taps) feeding the input. LFSRs have an interesting property that if the feedback taps
are chosen carefully, the outputs cycle through 2n

− 1 sequences for an n-bit LFSR. The
sequence then repeats after 2n

− 1 instances. If the output sequences are observed, they
appear to be random. An 8-bit LFSR is illustrated in Figure 7.11. An 8-bit LFSR will have
a sequence length of 255. Similarly a 16-bit LFSR would have a length of 65535, and so
on. (See Table 7.1 for a schema for pseudo-random number generation using LFSRs with
bit values varying from 9 to 20.)

LFSRs can be be easily implemented on ARM® controllers. The LFSR must be
initialised with a non-zero seed value. After the LFSR is initialised, it is clocked by shifting
the values to the left and loading a new bit into the bit0 of the shift register. The new bit that
is loaded into the bit0 of the shift register is calculated by XORing the bits at the selected
taps of the LFSR.

This discussion on random number generation will be used in the exercises.

88 Digital Input/Output

Table 7.1 Scheme for pseudo random number generation using LFSR

Bits Sequence length Taps

9 511 3,8

10 1023 2,9

11 2047 1,10

12 4095 0,3,5,11

13 8191 0,2,3,12

14 16,383 0,2,4,13

15 32,767 0,14

16 65535 1,2,4,15

17 131,071 2,16

18 262,143 6,17

19 524,287 0,1,4,18

20 1,048,575 2,19

7.7 Exercises

1. Toggle the state of LED LD5 by pressing and releasing switch S2.
2. Toggle the state of LED LD5 after Switch S2 is pressed and released twice.
3. Turn on LED LD5 for 5 seconds. During this 5 second window, count the number

of times switch S2 is pressed and released. After the 5 second window is over, make
LED LD6 blink the number of times switch S2 was pressed.

4. Use a random number generator based on a linear feedback shift register (LFSR).
Output the value of the random number generator, one bit at a time on LED LD5,
every 100 ms. Also try this experiment with 10 ms.

5. Make a coin-tossing machine using switch S2 and LEDs LD5 and LD6. If LD5
glows, it is ‘heads’ and if LD6 glows, it is ‘tails’. Use an LFSR-based random number
generator. When switch S2 is pressed the LFSR is clocked internally and when it is
released, the output of the LFSR is used to determine if LD5 or LD6 should be turned
on. If the output of the LFSR is ’1’, then LD5 is turned on and if it is ’0’, LD6 is
turned on.

8 Interrupts

This chapter introduces the reader to the interrupt and exception handling features of
the Stellaris® Guru. The Cortex™-M3 family of ARM® microcontrollers uses NVIC for
managing and servicing interrupts requests.

8.1 Exception Handling

The LM3S608 microcontroller based on the Cortex™-M3 family uses a nested vectored
interrupt controller (NVIC) for handling and prioritising exceptions and interrupts. All
exceptions raised are handled when the CPU is in the handler mode. The processor state
is saved onto the stack prior to this, and is returned when the Interrupt Service Routine
(ISR) finishes. The vector table contains the reset value of the stack pointer and the
start address, also called exception vectors, for all exception handlers. The vector address
(of the exception raised) is fetched from the vector table in parallel to the state-saving
process, which enables efficient interrupt entry. The processor also supports tail-chaining,
which enables back-to-back interrupts to be performed without incurring the overhead of
state-saving and restoration processes. Besides this, the NVIC also handles the priorities
of exceptions. Software can set 8 priority levels on 7 exceptions (system handlers) and 23
interrupts (raised by peripherals). Priorities on the system handlers are set with the NVIC
System Handler Priority n (SYSPRIn) registers. Interrupts are enabled through the NVIC
Interrupt Set Enable n (ENn) register and prioritised with the NVIC Interrupt Priorityn

(PRIn) registers.

8.1.1 Exception Types

Exceptions can be classified into various different types as shown in Table 8.1.

• Reset - The reset is a special kind of an exception wherein the processor stops
everything it is doing when reset is asserted. When de-asserted, the processor starts
execution from the address given in the vector table.

89

90 Interrupts

Table 8.1 Exception types

Exception type Vector number Priority Vector address or

offset

− 0 − 0x0000.0000

Reset 1 −3 (highest) 0x0000.0004

Non-maskable interrupt 2 −2 0x 0000.0008
(NMI)

Hard fault 3 −1 0x0000.000C

Memory management 4 programmable 0x0000.0010

Bus fault 5 programmable 0x0000.0014

Usage fault 6 programmable 0x0000.0018

− 7 − 10 (Reserved) − −

SVCall 11 programmable

Debug monitor 12 programmable 0x0000.0030

− 13 − −

PendSV 14 programmable 0x0000.0038

SysTick 15 programmable 0x0000.003C

Interrupts 16 and above programmable 0x0000.0040
and above

• NMI - The non-maskable interrupt (NMI) has the second highest priority after reset.
It can be signalled using either the NMI signal or triggered by software using the
Interrupt Control and State (INTCTRL) register.

• Hard Fault - Hard fault exceptions arise because of an error in exception handling
or because the exception could not be handled by any of the handlers. They have a
priority above all exceptions with configurable priorities.

• Memory Management Fault - Memory management fault exceptions are raised
when the processor tries to violate memory access rules.

• Bus Fault - A bus fault is an exception that occurs because of a memory related
fault for an instruction or data memory transaction such as prefetch fault or memory
access fault. Bus fault exception is user-controlled and can be enabled or disabled.

• Usage Fault - A usage fault is an exception that occurs because of a fault related to
instruction execution, such as

– an undefined instruction

– an illegal unaligned access

– invalid state of instruction execution

– an error on execution return.

• SVCall - A Supervisor Call (SVC) is made in an operating system framework.
Applications use the SVC instructions to access the OS kernel related functions.

Stellaris®ARM®Cortex™-M3 Lab Manual 91

• Debug Monitor - This exception is caused by the debug monitor (when not halting).
This exception is active only when enabled.

• PendSV - It is a pendable, interrupt-driven request for system-level service. It is
used in an OS environment for context-switching. It is triggered using the Interrupt
Control and State (INTCTRL) register.

• SysTick - The system timer, Systick, is capable of generating exceptions whenever
it counts down to zero. It helps in generating regular ticks and can be used in an OS
environment as a system tick.

• Interrupt (IRQ)- An interrupt is an exception signalled by a peripheral or generated
by a software request. It can be prioritised and is asynchronous to instruction
execution. Peripherals capable of generating interrupts include GPIO, UART, SSI,
I2C, Timers and ADC. A complete detailed list of interrupts, including vector address
offsets, can be found in the datasheet of LM3S608.

8.1.2 Exception States

Any exception is always in one of the following states:

• Inactive - The exception is neither active nor pending.

• Pending - The exception has occurred and is waiting to be serviced by the
microcontroller. Another interrupt request can change the state of the corresponding
exception to pending.

• Active - An exception that is being serviced by the processor but has not been
completed.

• Active and Pending - The exception is being serviced, and in the meanwhile another
exception is raised from the same source.

8.1.3 Exception Handler

The processor handles the various exceptions using:

• Interrupt Service Routines (ISRs) - Interrupts are handled by ISRs.

• Fault Handlers - Hard fault, memory management fault, usage fault, and bus fault
are the fault exceptions handled by fault handlers.

• System Handlers - NMI, PendSV, SVCall, SysTick, and all the fault exceptions are
system exceptions that are handled by system handlers.

92 Interrupts

8.1.4 Exception Priorities

All exceptions have a priority associated with them, with a lower priority number indicating
a higher priority and a configurable priority for all exceptions except Reset, Hard Fault
and NMI. By default, configurable priorities have a priority of 0. Reset, Hard Fault and
NMI have negative priorities and are not configurable. If multiple pending exceptions have
the same priority, the pending exception with the lowest exception number (refer to Table
8.1) takes precedence. When the processor is executing an exception handler, the exception
handler is pre-empted if a higher priority exception occurs. The NVIC also supports priority
grouping that divides each interrupt priority register into two fields:

• An upper field that defines the group priority

• A lower field that defines the subpriority within the group

Only the group priority defines the pre-emption of interrupt exceptions. If multiple pending
interrupts have the same group priority, the subpriority field determines the order in which
they would be processed.

8.2 Experiment 8

8.2.1 Objective

Control an LED using a switch by interrupt method and flash the LED once in every five
switch-presses.

8.2.2 Program Flow

In this experiment, it is required to get the LED blink at every five button presses. When
the button is pressed, it interrupts the processor and increments a variable counter. When
counter becomes equal to five, the LED connected to the GPIO port blinks. The block
diagram for the experiment is shown in Figure 8.1. The algorithm to be followed is:

1. Enable the system clock and the GPIO ports C and E.
2. Set direction of GPIO pins and enable internal pull-ups for the push button.
3. Configure the interrupt sequence and the type of triggering.
4. When the button is pressed and the ISR called, increment a counter.
5. If counter is equal to five, blink the LED and reset the counter.
6. Increment counter in subsequent button asserts and repeat.

A suggested program flow for the experiment is shown in Figure 8.2.

Stellaris®ARM®Cortex™-M3 Lab Manual 93

Figure 8.1 Block diagram for Experiment 8

8.2.3 Suggested StellarisWare API Function Calls

• GPIOPortIntRegister an interrupt handler for a GPIO port.

Prototype: void GPIOPortIntRegister(unsigned long ulPort, void

(*pfnIntHandler)(void))

Parameters: ulPort is the base address of the GPIO port. pfnIntHandler is a
pointer to the GPIO port interrupt handling function.

Description: This function ensures that the interrupt handler specified by
pfnIntHandler is called when an interrupt is detected at the selected GPIO
port. This function also enables the corresponding GPIO interrupt in the interrupt
controller; individual pin interrupts and interrupt sources must be enabled with
GPIOPinIntEnable().

Returns: None.

• GPIOPinIntClear Clears the interrupt for the specified pin(s).

Prototype: void GPIOPinIntClear(unsigned long ulPort, unsigned
char ucPins)

Parameters: ulPort is the base address of the GPIO port. ucPins is the bit-packed
representation of the pin(s).

Description: Clears the interrupt for the specified pin(s).The pin(s) are specified
using a bit-packed byte, where each bit that is set identifies the pin to be accessed,
and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port
pin 1, and so on.

94 Interrupts

Figure 8.2 Program flow for Experiment 8

Returns: None.

• GPIOIntTypeSet Sets the interrupt type for the specified pin(s).

Prototype: void GPIOIntTypeSet(unsigned long ulPort, unsigned
char ucPins, unsigned long ulIntType)

Parameters: ulPort is the base address of the GPIO port. ucPins is the bit-packed

Stellaris®ARM®Cortex™-M3 Lab Manual 95

representation of the pin(s). ulIntType specifies the type of interrupt trigger
mechanism.

Description: This function sets up the various interrupt trigger mechanisms for
the specified pin(s) on the selected GPIO port.The parameter ulIntType is an
enumerated data type that can have one of the following values:

GPIO_FALLING_EDGE, GPIO_RISING_EDGE,

GPIO_BOTH_EDGES, GPIO_LOW_LEVEL,

GPIO_HIGH_LEVEL, GPIO_DISCRETE_INT

where the different values describe the interrupt detection mechanism (edge or level)
and the particular triggering event (falling, rising, or both edges for edge detect,
low or high for level detect). Some devices also support discrete interrupts for
each pin on a GPIO port, giving each pin a separate interrupt vector. To use this
feature, the GPIO_DISCRETE_INT can be included to enable an interrupt per pin.
The GPIO_DISCRETE_INT is not available on all devices or all GPIO ports, so
consult the data sheet to ensure that the device and the GPIO port support discrete
interrupts. The pin(s) are specified using a bit-packed byte, where each bit that is set
identifies the pin to be accessed, and where bit 0 of the byte represents GPIO port
pin 0, bit 1 represents GPIO port pin 1, and so on.

Returns: None.

• GPIOPinIntEnable Enables interrupts for the specified pin(s).

Prototype: void GPIOPinIntEnable(unsigned long ulPort, unsigned
char ucPins)

Parameters: ulPort is the base address of the GPIO port. ucPins is the bit-packed
representation of the pin(s).

Description: Unmasks the interrupt for the specified pin(s). The pin(s) are specified
using a bit-packed byte, where each bit that is set identifies the pin to be accessed,
and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port
pin 1, and so on.

Returns: None.

• IntEnable Enables an interrupt.

Prototype: void IntEnable(unsigned long ulInterrupt)

Parameters: ulInterrupt specifies the interrupt to be enabled.

Description: The specified interrupt is enabled in the interrupt controller. Other
enables for the interrupt (such as at the peripheral level) are unaffected by this
function.

Returns: None.

96 Interrupts

• IntMasterEnable Enables the processor interrupt.

Prototype:

tBoolean IntMasterEnable(void)

Description: This function allows the processor to respond to interrupts. This
function does not affect the set of interrupts enabled in the interrupt controller; it
just gates the single interrupt from the controller to the processor.

Returns: Returns True if interrupt is enabled.

8.3 Exercises

1. Turn on LED LD5 for 5 seconds. During this 5-seconds window, count the number
of times switch S2 is pressed and released using the interrupt method. After the
5-seconds window is over, make LED LD6 blink the number of times S2 was pressed.

2. Play a game between two players. Player 1 has to press switch S2 and player 2 has to
press S3. The two switches must be read using interrupt method. Turn on LED LD5
for 5 seconds. During this window count the number of times switches S2 and S3 are
pressed. At the end of the 5-seconds interval, display the winner on LD6 if Player 1
was able to press his switch more number of times than Player 2, or LD7 if Player 2
wins by pressing his switch more number of times than Player 1.

3. Play fastest-finger-first game between two players using switches S2 and S3 which
must be read using the interrupt method. Indicate the start of the game by turning on
LED LD5 after a random period of time. Thereafter if S2 is pressed first, then turn
on LD6, else if S3 is pressed first, then turn on LD7. In the event of a tie, turn both
the LEDs, LD6 and LD7, on.

4. Create electronic dice using LEDs LD5, LD6 and LD7. These LEDs are used to
represent numbers between 1 and 6 in binary form. Create a software loop to count
between 1 to 6 over and over again. The user has to press switch S2 in interrupt
method. When the switch is pressed, the current count in the loop is displayed on the
LEDs.

9 Timer and Counter

This chapter deals with the timing and counting features of the LM3S608 on the Stellaris®

Guru evaluation kit. The basic concepts of 16, 32 and 24 bit timers and the watchdog timer
are explained in this chapter with the help of several experiments.

9.1 Introduction

The LM3S608 contains several timers, viz. general purpose timers, and two system control
blocks, viz., SysTick and the watchdog timer. We cover each timer and system block in
detail starting with the general-purpose timers.

9.1.1 General-Purpose Timers

Programmable timers can be used to count or time external events that drive the timer
input pins. The Stellaris® General-Purpose Timer Module (GPTM) consists of three GPTM
blocks: Timer0, Timer1 and Timer2. Each timer block consists of two 16-bit timers that can
be operated as two individual 16-bit timers, or as one 32-bit timer. In addition, the GPTM
can be used to trigger the ADC, generate PWM for motion control, and as a 32-bit timer
for real time clock operation. Figure 9.1 shows the block diagram of the general-purpose
timer module. We summarise some of the features of the GPTM below.

• Three general-purpose timer modules each of which provides two 16-bit
timers/counters. Each can be configured to operate independently in the following
ways.

– As a single 32-bit timer

– As one 32-bit real time clock

– For pulse width modulation

– To trigger analog-to-digital conversions

97

98 Timer and Counter

• 32-Bit and 16-bit timer modes

– Programmable one-shot mode

– Programmable Periodic timer

– ADC event trigger

• 16-bit PWM mode with software programmable output inversion of the PWM signal.

Figure 9.1 General-purpose timer block diagram (Stellaris® LM3S608 microcontroller datasheet)

9.1.2 SysTick Timer

The Cortex™-M3 includes an in-built system timer called SysTick which provides a 24-bit,
clear-on-write, decrementing and wrap-on-zero counter with a flexible control mechanism.
The counter can be used in the following ways.

• As an RTOS tick timer that fires at a programmable rate and invokes a SysTick
routine

• As a high-speed alarm timer using the system clock

• As a simple counter used for measuring time to completion and run time.

When enabled, the timer counts down on each clock from the reload value to zero, reloads
or wraps on the next clock edge, and then decrements on subsequent clocks. The SysTick
timer runs on the system clock, and so if this clock signal is stopped in low power mode,
the SysTick counter stops. Moreover, when the system is halted for debugging, the timer
does not decrement.

Stellaris®ARM®Cortex™-M3 Lab Manual 99

9.1.3 Watchdog Timer

A watchdog timer can generate a non-maskable interrupt or an interrupt with highest
priority when a time-out value is reached. The interrupt can either reset the system or call
any other interrupt service routine. The watchdog timer is used to regain control of the
system in case of failure due to a software error or due to the failure of an external device
responding in an unexpected way.

Figure 9.2 Watchdog timer block diagram (Stellaris® LM3S608 microcontroller datasheet)

The Stellaris® watchdog timer module has the following features.

• 32-bit down counter with a programmable load register
• Separate watchdog clock with an enable.
• Programmable interrupt generation with interrupt masking
• Reset generation logic with an enable/disable

The Watchdog timer can be configured to generate an interrupt on its first time-out and

100 Timer and Counter

a reset on its second time-out. The block diagram for the Watchdog module is shown in
Figure 9.2.

9.2 Functional Description

9.2.1 General-Purpose Timer Module

The timer module provides two half-width timers/counters that can be configured to operate
individually as timers or event counters, or can be combined to operate as one full-width
timer or real-time clock (RTC). The two half-width timers are referred to as TimerA and
TimerB and can be used together as a 32-bit full width timer, also referred to as TimerA.
When configured as half-width or full-width, the timers can be used either in one-shot or
continuous mode. In one-shot mode, when the timer reaches zero it will cease to count. In
continuous mode, when the timer reaches zero it will reload the count and continue on the
subsequent clock edges. It can also be used for event capture or as a pulse width modulation
(PWM) generator in the half-width configuration. Control is also provided over interrupt
sources and events. Interrupts can be generated to indicate that an event has been captured,
or that a certain number of events have been captured. Interrupts can also be generated
when the timer has counted down to zero, or when the RTC matches a certain value.

9.2.2 SysTick Timer

SysTick timer is a countdown timer and can be used to provide an interrupt whenever it
wraps on to zero. The timer consists of three registers,

• SysTick Control and Status (STCTRL): A control and status register to
configure its clock, enable the counter, enable the SysTick interrupt and determine
the counter status.

• SysTick Reload Value (STRELOAD): The reload value for the counter, used to
provide the counter’s wrap value.

• SysTick Current Value (STCURRENT): The current value of the decrementing
counter.

The SysTick interrupt handler does not need to clear the SysTick interrupt source. This will
be done automatically by the NVIC when the SysTick interrupt handler is called.

9.2.3 Watchdog Timer

The Watchdog timer module generates the first time-out signal when the 32-bit counter
reaches the zero state after being enabled; enabling the counter also enables the watchdog
timer interrupt. After the first 32-bit time-out, the counter is reloaded again and resumes
counting down from the value. If the timer counts down to its zero state again and the

Stellaris®ARM®Cortex™-M3 Lab Manual 101

reset signal has been enabled, the Watchdog timer asserts its reset signal to the system. The
Watchdog module interrupt and reset generation can be enabled or disabled as required.
When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register
value and not its last state. Some of the important registers for controlling the Watchdog
timer are:

• Watchdog Load (WDTLOAD): When this register is written, the value is
immediately loaded and the counter restarts counting down from the new value.

• Watchdog Value (WDTVALUE): This register contains the current count value
of the timer.

• Watchdog Control (WDTCTL): This register is the watchdog control register.
The watchdog timer can be configured to generate a reset signal (on second time-out)
or an interrupt on time-out.

9.3 Experiment 9

9.3.1 Objective

To make an LED connected to PC5 blink using delays generated with the SysTick Timer.

9.3.2 Program Flow

The aim of this experiment is similar to the experiment encountered in the chapter on
Digital I/O. It requires us to make an LED blink with a delay. However, the only difference
between the two experiments is in the way the delay is generated. The block diagram for
the experiment is shown in Figure 9.3. In this experiment, we generate delays using the
SysTick timer. We load a count in the timer and check it periodically until it reaches zero.
A suitable algorithm for this program is:

1. Enable the system clock, GPIO port C and the SysTick timer.
2. Configure the GPIO port and load an initial count into the SysTick timer.
3. Begin counting and check when the counter reaches zero.
4. When it reaches zero, toggle the LED connected to PC5.
5. The count gets reloaded into the SysTick timer, which starts counting again.
6. Toggle the LED again when counter touches zero.

A suggested program flow for the experiment is shown in Figure 9.4.

102 Timer and Counter

Figure 9.3 Block diagram for Experiment 9

Figure 9.4 Program flow for Experiment 9

Stellaris®ARM®Cortex™-M3 Lab Manual 103

9.3.3 Suggested StellarisWare API Function Calls

The functions required to drive the SysTick timer module are listed in driverlib/

systick.c with driverlib/systick.c containing the API definitions that are useful
in applications.

• SysTickPeriodSet Sets the period of the SysTick counter.

Prototype: void SysTickPeriodSet(unsigned long ulPeriod)

Parameters: ulPeriod is the number of clock ticks in each period of the SysTick
counter; must be between 1 and 224 (16, 777, 216) inclusive.

Description: This function sets the rate at which the SysTick counter wraps; this is
equal to the number of processor clocks between interrupts.

Returns: None

• SysTickEnable Enables the SysTick counter.

Prototype: void SysTickEnable(void)

Parameters: None

Description: This function will start the SysTick counter. If an interrupt handler
has been registered, it is called when the SysTick counter rolls over.

Returns: None

• SysTickValueGet Gets the current value of the SysTick counter.

Prototype: unsigned long SysTickValueGet(void)

Parameters: None

Description: This function returns the current value of the SysTick counter, which
is a value between Period -1 and Period-0, inclusive.

Returns: Returns the current value of the SysTick timer.

9.4 Experiment 10

9.4.1 Objective

To control the intensity of an LED connected to PC5 using PWM implemented in hardware
using Timer 0 in the GPTM module. Dim and brighten the LED in steps alternatively.

9.4.2 Program Flow

The block diagram for the experiment is shown in Figure 9.5. A suggested program flow is
shown in Figure 9.6.

104 Timer and Counter

9.4.3 Suggested StellarisWare API Function Calls

The functions required to drive the timers in the GPTM are contained in
driverlib/timer.c and defined for use in applications in driverlib/timer.h.

• TimerConfigure Configures the timer(s).

Prototype: void TimerConfigure(unsigned long ulBase, unsigned long
ulConfig)

Parameters: ulBase is the base address of the timer module. ulConfig is the
configuration of the timer.

Description: This function configures the operating mode of the timer. Note that
the timer module should be disabled before being configured. The configuration is
defined by one of the following macros:

TIMER_CFG_32_BIT_OS 32-bit one-shot timer, counts down

TIMER_CFG_32_BIT_OS_UP 32-bit one shot timer, counts up

TIMER_CFG_32_BIT_PER 32-bit periodic timer, counts down

TIMER_CFG_32_BIT_PER_UP 32-bit periodic timer, counts up

TIMER_CFG_32_RTC 32-bit real time clock.

TIMER_CFG_16_BIT_PAIR two 16-bit timers.

When configured for use as two 16-bit timers, each timer is configured independently.
The first timer is configured by setting ulConfig to be the result of a logical OR
operation between one of the following values and ulConfig.

TIMER_CFG_A_ONE_SHOT 16-bit one-shot timer

TIMER_CFG_A_ONE_SHOT_UP 16-bit one-shot timer that counts up instead of down

TIMER_CFG_A_PERIODIC 16-bit periodic timer

TIMER_CFG_A_PERIODIC_UP 16-bit periodic timer that counts up instead of down

TIMER_CFG_A_CAP_COUNT 16-bit edge count capture

TIMER_CFG_A_CAP_COUNT_UP 16-bit edge count capture that counts up instead
of down

TIMER_CFG_A_CAP_TIME 16-bit edge time capture

TIMER_CFG_A_CAP_TIME_UP 16-bit edge time capture that counts up instead of
down

TIMER_CFG_A_PWM 16-bit PWM output

Stellaris®ARM®Cortex™-M3 Lab Manual 105

Figure 9.5 Block Diagram for Experiment 10

Similarly, the second timer is configured by setting ulConfig to the result of a
logical OR operation between one of the corresponding TIMER_CFG_B_* macros
and ulConfig.

Returns: None

• TimerLoadSet Sets the timer load value.

Prototype: void TimerLoadSet(unsigned long ulBase, unsigned long ulTimer,
unsigned long ulValue)

Parameters: ulBase is the base address of the timer module. ulTimer specifies
the timer that need to be adjusted—must be one of TIMER_A, TIMER_B, or
TIMER_BOTH. ulValue is the load value.

Description: This function sets the timer load value. If the timer is already running
when the function is called, the value is loaded immediately. Otherwise, the value is
loaded into the counter when it is triggered with TimerEnable (explained below).

Returns: None

• TimerLoadGet Gets the timer load value.

Prototype: unsigned long TimerLoadGet(unsigned long ulBase, unsigned long
ulTimer);

Parameters: ulBase is the base address of the timer module. ulTimer specifies
the timer.

Description: The function returns the currently programmed load value for the
specified timer.

106 Timer and Counter

Figure 9.6 Program Flow for Experiment 10

Returns: The load value of the timer.

• TimerMatchSet Sets the timer match value.

Prototype: void TimerMatchSet(unsigned long ulBase, unsigned long
ulTimer, unsigned long ulValue

Parameters: ulBase is the base address of the timer module. ulTimer specifies
the timer to be adjusted. ulValue is the match value.

Description: This function sets the match value for a timer. When the timer count
value of the counter matches the ulValue, an interrupt is triggered. However, the

Stellaris®ARM®Cortex™-M3 Lab Manual 107

timer continues to count until it wraps onto zero. This is used in ‘capture count’
mode to determine when to interrupt the processor, and in PWM mode to determine
the duty cycle of the output signal.

Returns: None

• TimerEnable Enables the timer.

Prototype: void TimerEnable(unsigned long ulBase, unsigned long
ulTimer)

Parameters: ulBase is the base address of the timer module. ulTimer specifies
the timer to be enabled.

Description: This function enables the operation of the timer module. The timer
must be configured before it is enabled.

Returns: None

• TimerDisable Disables the timer.

Prototype: void TimerDisable(unsigned long ulBase, unsigned long
ulTimer)

Parameters:ulBase is the base address of the timer module. ulTimer specifies the
timer to be disabled.

Description: This function disables the operation of the timer module.

Returns: None

9.5 Experiment 11

9.5.1 Objective

To evaluate the functioning of the Watchdog timer.

9.5.2 Program Flow

In this experiment we see the working of a Watchdog timer. The timer is programmed to
reset itself after a specific period of time. The LED LD7 is set to blink and the ’Reset’
is transmitted serially every time the system resets. On pressing the button S2, the reset
and the interrupt on the Watchdog timer are disabled. The Watchdog timer keeps resetting
the system after a specific interval of time. This is seen on the terminal application as the
blinking LED (LD7). The algorithm for this experiment is:

1. Enable the system clock, GPIO ports A, C, E and the Watchdog timer module.
2. Configure the GPIO pins for the LEDs and the button.
3. Enable the interrupts on GPIO Port E.

108 Timer and Counter

4. Make PA0 and PA1 pins UART-controlled.
5. Set the Watchdog timer configuration.
6. Enable the Watchdog timer and its interrupt.
7. Blink the LED LD7 (PC5).
8. If button S2 is pressed, the Watchdog reset and interrupt is disabled and the LEDs

are turned on.

Figure 9.7 Program flow for Experiment 11

9.5.3 Suggested StellarisWare API Function Calls

This driver is contained in driverlib/watchdog.c, with driverlib/watchdog.h

containing the API definitions for use by applications.

• WatchdogReloadSet Sets the Watchdog timer reload value.

Stellaris®ARM®Cortex™-M3 Lab Manual 109

Prototype:void WatchdogReloadSet(unsigned long ulBase, unsigned long
ulLoadVal)

Parameters:ulBase is the base address of the watchdog timer module. ulLoadVal
is load value for the watchdog timer.

Description: This function sets the value to load into the watchdog timer when
the count reaches zero for the first time; if the watchdog timer is running when this
function is called, then the value will be immediately loaded into the watchdog timer
counter. If the ulLoadVal parameter is 0, then an interrupt is immediately generated.

Returns: None

• WatchdogResetEnable Enables the Watchdog timer reset.

Prototype: void WatchdogResetEnabe(unsigned long ulBase)

Parameters: ulBase is the base address of the Watchdog timer module.

Description: Enables the capability of the watchdog timer to issue a reset to the
processor upon a second time-out condition.

Returns: None

• WatchdogEnable Enables the watchdog timer.

Prototype:void WatchdogEnable(unsigned long ulBase)

Parameters: ulBase is the base address of the Watchdog module.

Description: This will enable the watchdog timer counter and interrupt.

Returns: None

• WatchdogIntClear Clears the watchdog timer interrupts.

Prototype: void WatchdogIntClear(unsigned long ulBase)

Parameters: ulBase is the base address of the Watchdog module.

Description: The watchdog timer interrupt source is cleared so that it no longer
asserts.

Returns: None

9.6 Exercises

1. Turn on LED LD5 for 5 seconds using a timer. During this 5-seconds Window, count
the number of times switch S2 is pressed and released. After the 5-seconds window
is over, make LED LD6 blink the number of times S2 was pressed.

110 Timer and Counter

2. Use a random number generator based on a linear feedback shift register (LFSR).
Output the value of the random number generator, one bit at a time on LED LD5,
every 100 ms using a timer. Also try this experiment with 10 ms and compare the
outputs.

3. Use a timer as a random number generator for electronic dice. The dice number is
displayed on LEDs, LD5, LD6 and LD7, in binary form. Poll switch S2. When S2
is pressed, capture the value of the timer and use mod-6 function to get a random
number between 1 and 6 and display it on the LEDs.

10 Serial Communication with
the UART

10.1 Introduction

Computers transfer data in two ways, serial and parallel. In parallel communication, often
one or more data lines are required to transmit data to devices that are placed only a few
meters away. Devices which use parallel mode of communication are printers, hard disks,
etc. If data is to be transferred over longer distances, serial communication is used. In
contrast to parallel communication, data is sent on a single line, one bit at a time, in serial
communication. Serial communication using the Stellaris® Guru is the topic of this chapter.
The Stellaris® LM3S608 has serial communication capability built into it, thereby making
fast data transfer using a few wires possible.

The Stellaris® Universal Asynchronous Receiver/Transmitter (UART) has the following
features:

• Two fully programmable 16C550-type UARTs
• Programmable baud rate generator
• Separate 16× 8 transmit (Tx) and receive (Rx) FIFO buffers
• Automatic generation and stripping of start, stop, parity bits
• Programmable serial interface

– 5, 6, 7 or 8 data bits

– Even, odd, stick or no parity bit generation

– 1 or 2 stop-bit generation

– Baud rate generator

• Modem/Flow control
• 9-bit operation
• Line-break generation and detection

111

112 Serial Communication with the UART

Serial communication on the Stellaris® Guru is achieved using a FTDI FT232
UART-to-USB bridge that allows the board to be detected as a standard virtual COM port
on the computer. Data is sent and received in a standard manner as would have been done
when using a RS232 interface. Figure 10.1 shows the block diagram of the UART module.

Figure 10.1 UART block diagram (Stellaris® LM3S608 microcontroller datasheet)

10.2 Functional Description

10.2.1 Half and Full Duplex Transmission

Serial communication can be further classified on the basis of the direction of data on the
communication line. If data can be both transmitted and received, it is duplex transmission.
If data can only be transmitted or received, it is simplex transmission, as in printers where
data is only sent. Duplex transmission can be further classified into half duplex and full
duplex. In half duplex, at a particular instant of time, data is either being transmitted or
being received, in contrast to full duplex transmission where bidirectional communication
takes place. Hence, full duplex requires two conductors for communication whereas
simplex and half duplex require only one conductor. Figure 10.2 highlights the several
modes of serial communication.

Stellaris®ARM®Cortex™-M3 Lab Manual 113

Figure 10.2 Serial modes

10.2.2 Serial Communication and Data Framing

In asynchronous serial communication, each character data is placed between the start and
stop bits. This is called framing. The start bit is always one bit but the stop bit can be one
or two bits. The start bit is 0 (low) and the stop bit is 1 (high). The control logic outputs the
serial bit stream beginning with a start bit, and followed by the data bits (LSB first), parity
bit, and the stop bits according to the programmed configuration in the control registers.
Figure 10.3 shows an example of a data frame.

Figure 10.3 Data frame

10.3 Experiment 12

10.3.1 Objective

Receive a byte over UART, increment it by one and transmit it back. The configuration of
the UART module is 115200, 8, N, 1 (baud rate = 115200 kbps, data length = 8 bits, parity
= none and stop bits = one).

114 Serial Communication with the UART

10.3.2 Program Flow

Serial mode of data transfer is one of the many modes in which a microcontroller
can communicate. The block diagram for the experiment is shown in Figure 10.4. This
experiment requires us to receive a byte over UART, increment the byte and then transmit
the new byte over UART. For example, if A is received the reply should be B or if 3 is
received the reply should be 4. The algorithm to be followed is:

1. Enable the System Clock, GPIO port A and the UART module.

2. Set the direction of the GPIO port and configure the UART module for settings
115200, 8, N, 1.

3. Recieve a byte over UART.

4. Increment the byte.

5. Transmit the byte back over UART and view on serial monitor.

Figure 10.5 shows a suggested program flow for this experiment.

Figure 10.4 Block diagram for Experiment 12

10.3.3 Suggested StellarisWare API Function Calls

The functions used to drive the UART module are contained in driverlib/uart.c with
driverlib/uart.h containing the API definitions for use by application.

• UARTConfigSetExpClk Sets the configuration of the UART module.

Prototype: void UARTConfigSetExpClk(unsigned long ulBase, unsigned long
UARTClk, unsigned long ulBaud, unsigned long ulConfig);

Stellaris®ARM®Cortex™-M3 Lab Manual 115

Figure 10.5 Program flow for Experiment 12

Parameters: ulBase is the base address of the UART port. ulUARTClk is the rate of
the clock supplied to the UART module. ulBaud is the desired baud rate. ulConfig
is the data format for the port.

Description: This function configures the UART for operation in the specified data
frame format. The baud rate is specified in the ulBaud parameter and the data format
in the ulConfig parameter.

The ulConfig is the logical OR of three parameters, the word length, the number
of stop bits and the parity.

UART_CONFIG_WLEN_8, UART_CONFIG_WLEN_7, UART_CONFIG_WLEN_6, and
UART_CONFIG_WLEN_5} select from eight to five data bits per byte.
UART_CONFIG_STOP_ONE& UART_CONFIG_STOP_TWO select one or two stop bits.
UART_CONFIG_PAR_NONE, UART_CONFIG_PAR_EVEN,

UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE,

and UART_CONFIG_PAR_ZERO

116 Serial Communication with the UART

select the parity mode (no parity bit, even parity bit, odd parity bit, parity bit always
one, and parity bit always zero, respectively).

The peripheral clock is the same as the processor clock and can be obtained by using
SysCtlClockGet().

Returns: None

• UARTCharGet Waits for a character from the specified port.

Prototype: long UARTCharGet(unsigned long ulBase)

Parameters: ulBase is the base address of the UART port.

Description: This function gets a character from the receive FIFO for the specified
port. If there are no characters available, this function waits until a character is
received before returning.

Returns: Returns the character read from the specified port, cast as a long.

• UARTCharPut Waits for a character from the specified port.

Prototype: void UARTCharGet(unsigned long ulBase, unsigned char ucData)

Parameters: ulBase is the base address of the UART port. ucData is the character
to be transmitted.

Description: This function sends the character ucData to the transmit FIFO for the
specified port. If there is no space available in the transmit FIFO, this function waits
until there is space available before returning.

Returns: None

10.4 Experiment 13

10.4.1 Objective

To control the intensity of LED, LD5, connected on PC7 using software PWM using
parameters received over UART. Configuration of the UART is 115200, 8, N, 1.

10.4.2 Program Flow

This experiment allows us to control the intensity of an LED using parameters received over
UART. The block diagram is shown in Figure 10.6. The parameter is a number between 0
to 10, where 0 signifies the least intensity and 10 signifies the highest intensity. Drawing on
the algorithm from the previous experiment with the addition of software PWM, the new
algorithm is:

Stellaris®ARM®Cortex™-M3 Lab Manual 117

Figure 10.6 Block diagram for Experiment 13

1. Enable the system clock, GPIO ports C and A and the UART module.
2. Set the direction of GPIO ports A and C and configure the UART module for setting

115200, 8, N, 1.
3. Receive the parameter over UART.
4. Depending on the magnitude of the parameter, vary the intensity of LD5 using PWM.
5. Continue PWM until a new parameter is received.

The program flow for this experiment is straightforward and is shown in Figure 10.7.

10.5 Experiment 14

10.5.1 Objective

Measure the light intensity using the LED light sensor on the Stellaris® Guru and send
measured values to a PC to plot them in a graphing utility with respect to time. You may
also view the intensity values on a serial monitor. Configuration of the UART is 115200, 8,
N, 1.

118 Serial Communication with the UART

Figure 10.7 Program flow for Experiment 13

10.5.2 Program Flow

In this experiment, we use an LED as an ambient light sensor. The block diagram for the
experiment is shown in Figure 10.8. An LED can be used as a light sensor in reverse bias.
The algorithm for this experiment is:

• Enable the system clock, GPIO ports A and D and the UART module.
• Set the direction of GPIO port A and configure the UART module for 115200, 8,

N, 1.

Stellaris®ARM®Cortex™-M3 Lab Manual 119

Figure 10.8 Block diagram for Experiment 14

• Set the direction of GPIO port D pin 1 as output.
• Make PD1 high for 100 ms and then change the data direction of pin to input.
• Start a counter and wait for PD1 to go low.
• Once PD1 is low, the count is proportional to the ambient light intensity.
• Scale counter value accordingly and transmit over UART.
• Use a plotting application to plot a real time graph of ambient light intensity.

There are many ways to plot waveforms on a computer. It is up to you what method you
want to employ for this experiment. Some of the methods are:

1. Store incoming value to a text file and then plot using Microsoft Excel.
2. Develop a custom PC application communicating with the serial port.

Figure 10.9 shows a suggested program flow for the experiment.

10.6 Experiment 15

10.6.1 Objective

To simulate a real-time clock using the general purpose timer module and output time over
UART in hh:mm:ss format.

10.6.2 Program Flow

In this experiment we maintain time using the Guru kit. The time keeping is done by the
microcontroller and the current time can be viewed on a serial monitor. The current time
is set by sending parameters over UART. We set up a timer to generate an interrupt every
second which increments variables suitably to maintain time. In every interrupt routine, the
current time is sent over UART for display on the terminal screen. The block diagram for
the experiment is shown in Figure 10.10.

120 Serial Communication with the UART

Figure 10.9 Program flow for Experiment 14

An algorithm for this experiment is:

1. Enable the system clock, GPIO port A and Timer0 module.
2. Configure PA0 and PA1 as UART and configure for 115200, 8, N, 1.
3. Enable 32-bit operation in Timer0 module and set the trigger period to 1 second.
4. Receive the current time parameters over UART and store the variables.

Stellaris®ARM®Cortex™-M3 Lab Manual 121

Figure 10.10 Block diagram for Experiment 15

5. Enable interrupt generation by the timer module.
6. Whenever an interrupt occurs, increment the seconds variable.
7. When the seconds variable is sixty, increment the minutes variable and reset the

seconds. Do the same when the minutes variable overflows.
8. Send the new time over UART for display on the terminal application.

A suggested program flow is shown in Figure 10.11 on the following page.

10.7 Exercises

1. Instead of hardware UART, design a software-driven UART (also called bit-bang
UART) to transmit data to a computer using the 115200, 8, N, 1 format.

2. Design a software-driven UART receiver to receive data from a computer using the
115200, 8, N, 1 format. The computer should transmit the 8-bit intensity values that
the program on the Guru should receive and set the LED LD5 intensity accordingly.

3. Design an interrupt-driven UART communication protocol in which the blinking rate
of an LED is changed with respect to a parameter received over UART. Instead of
polling the UART module, an interrupt is to be generated when data is received by
the module.

4. Maintain an up/down counter using Guru. The count is to be maintained using timers
and displayed on a terminal emulation program.

5. Connect two Guru kits together, one as the master and the other as slave. The master
should send instructions to vary the blinking pattern of LEDs on the slave board.

6. Implement dice using LFSR random number generator and output a new value over
UART every time switch S2 is pressed.

7. Connect a computer and two Guru kits in series. Using a terminal emulation program
running on the computer, send commands to light up LEDs on either of the kits.

122 Serial Communication with the UART

Figure 10.11 Program flow for Experiment 15

11 Analog-to-Digital Converter

An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog
voltage to a discrete digital number. This chapter deals with the ADC module on the
Stellaris® family of microcontrollers and explains its usage through many experiments.

11.1 Introduction

The Stellaris ADC module features 10-bit conversion resolution, supports eight input
channels, and comes with an internal temperature sensor. The ADC module contains four
programmable sequencers that allow for the sampling of multiple analog input sources
without any controller intervention. Each sample sequence provides flexible programming
with fully configurable input source, trigger events, interrupt generation, and sequence
priority.

The Stellaris® ADC module has the following features:

• Eight analog input channels
• Single ended and differential input configurations
• On-chip internal temperature sensor
• Sample rate of 500 thousand samples per second
• Four programmable sample conversion sequences from one to eight entries long,

with corresponding conversion result FIFOs
• Hardware-averaging of up to 64 samples for improved accuracy
• Converter using an internal 3-V reference

Four sampling sequences, each with configurable trigger events, can be captured. The first
sequence will capture up to eight samples, the second and third sequences will capture up to
four samples, and the fourth sequence will capture a single sample. Each sample can be the
same channel, different channels, or any combination in any order. Hardware oversampling
of the ADC improves accuracy. An oversampling factor of 2x, 4x, 8x, 16x, 32x and 64x is
supported but it reduces the throughput of the ADC by a commensurate factor. Hardware

123

124 Analog-to-Digital Converter

Figure 11.1 ADC module block diagram (Stellaris® LM3S608 microcontroller datasheet)

oversampling is applied uniformly across all sample sequences. Software oversampling of
the ADC is also available but reduces the depth of the sample sequences by a corresponding
amount. The block diagram of the ADC module on the LM3S608 is shown in Figure 11.1.

11.2 Functional Description

The analog-to-digital converter (ADC) API provides a set of functions for dealing with
ADC. Functions are provided to configure sample sequencers, read the captured data,
register a sample sequence interrupt handler, and handle interrupt masking/clearing.

In order to build a simple ADC, two parts are required: a sample-and-hold circuit and
a circuit that determines the voltage held by the sample-and-hold circuit. A simple way to
implement a sample-and-hold circuit is to have an input fed to a capacitor through a switch.
To sample the input, one closes the switch between the input and the capacitor, and to hold
the sample value, one opens the switch.

The Stellaris® ADC collects sample data by using a programmable sequence-based
approach instead of the conventional single or double sampling sequences found on many
ADC modules. Each programmed sequence is a series of consecutive samples, allowing the
ADC to collect multiple input sources without having to be reconfigured. The programming
of each sample in the sample sequence includes parameters such as the input mode
(differential or single-ended) and source; interrupt generation on sample completion and
indicator for the last sample in the sequence.

Stellaris®ARM®Cortex™-M3 Lab Manual 125

11.3 Experiment 16

11.3.1 Objective

Take analog readings on the rotation of a rotary potentiometer connected to ADC7 of
LM3S608 on the Stellaris® Guru, and output the reading over UART0 and display it on
the terminal.

11.3.2 Program Flow

The world is analog. To use analog quantities in a digital system, they first need to
converted to discrete values using sampling and quantization technqiues. This experiment
demonstrates how we can convert movement of the rotary potentiometer to discrete digital
values and then output them over the UART. Figure 11.2 shows the block diagram of
the setup required for this experiment. The 10-bit ADC converts the voltage from the
potentiometer to a value between 0 and 1023.

Figure 11.2 Block diagram for Experiment 16

The algorithm to be followed is:

1. Enable the system clock, GPIO port A, the UART and the ADC module.
2. Configure the UART and the ADC peripheral for appropriate function.
3. Read the analog value of the potentiometer through ADC Channel 7 and output on

UART0 for display on a serial monitor.
4. Move the potentiometer and see changes in the sampled value.

A suggested program flow for the experiment is shown in Figure 11.3.

126 Analog-to-Digital Converter

Figure 11.3 Program flow for Experiment 16

11.3.3 Suggested StellarisWare API Function Calls

The functions used to drive the ADC module are contained in driverlib/adc.h with
driverlib/adc.c containing the API definitions for use by the application.

• ADCSequenceConfigure Configures the trigger source and priority of a sample
sequence.

Prototype: void ADCSequenceConfigure(unsigned long ulBase, unsigned

Stellaris®ARM®Cortex™-M3 Lab Manual 127

long ulSequenceNum, unsigned long ulTrigger, unsigned long ulPriority)

Parameters: ulBase is the base address of the ADC module. ulSequenceNum is
the sample sequence number. ulTrigger is the trigger sequence that initiates the
A/D conversion. ulPriority is the relative priority of the sample sequence.

Description: This function configures the initiation criteria for a sample sequence.
Valid sample sequences range from zero to three; sequence zero will capture up to
eight samples, sequences one and two will capture up to four samples, and sequence
three will capture a single sample.

The ulTrigger parameter can take on the following values:

ADC_TRIGGER_PROCESSOR, ADC_TRIGGER_COMP0,

ADC_TRIGGER_COMP1, ADC_TRIGGER_EXTERNAL,

ADC_TRIGGER_TIMER, ADC_TRIGGER_PWM0,

ADC_TRIGGER_PWM1, ADC_TRIGGER_PWM2,

ADC_TRIGGER_PWM3 and ADC_TRIGGER_ALWAYS

The ulPriority parameter is a value between 0 and 3, where 0 represents the
highest priority and 3 the lowest.

Returns: None

• ADCSequenceStepConfigure Configure a step of the sample sequencer.

Prototype: void ADCSequenceStepConfigure(unsigned long ulBase,
unsigned long ulSequenceNum, unsigned long ulStep, unsigned long ulConfig)

Parameters:ulBase is the base address of the ADC module. ulSequenceNum is
the sample sequence number. ulStep is the step to be configured. ulConfig is the
configuration of this step.

Description: This function will set the configuration of the ADC for one step of
a sample sequence. The ADC can be configured for single-ended or differential
operation (the ADC_CTL_D bit selects differential operation when set), the channel to
be sampled can be chosen (the ADC_CTL_CH0 through ADC_CTL_CH15 values), and
the internal temperature sensor can be selected (the ADC_CTL_TS bit). Additionally,
this step can be defined as the last in the sequence (the ADC_CTL_END bit) and it
can be configured to cause an interrupt when the step is complete (the ADC_CTL_IE
bit). If digital comparators are present on the device, this step may also be configured
to send the ADC sample to the selected comparator using ADC_CTL_CMP0 through
ADC_CTL_CMP7. The ADC uses the configuration at the appropriate time when the
trigger for this sequence occurs.

The ulStep parameter determines the order in which the samples are captured by
the ADC when the trigger occurs. It can range from zero to seven for the first sample

128 Analog-to-Digital Converter

sequence, from zero to three for the second and third sample sequence, and can only
be zero for the fourth sample sequence.

Returns: None

• ADCSequenceEnable Enables a sample sequence

Prototype: void ADCSequenceEnable(unsigned long ulBase, unsigned long
ulSequenceNum)

Paramters: ulBase is the base address of the ADC module. ulSequenceNum is
the sample sequence number.

Description: Allows the specified sample sequence to be captured when its trigger
is detected.

Returns: None

• ADCIntClear Clears the sample sequence interrupt source.

Prototype: void ADCIntClear(unsigned long ulBase, unsigned long
ulSequenceNum)

Parameters: ulBase is the base address of the ADC module. ulSequenceNum is
the sample sequence number.

Description: The specified sample sequence interrupt is cleared so that it no longer
asserts. This is done in the interrupt handler to keep it from being called again
immediately upon exit.

Returns: None

• ADCIntStatus Gets the current interrupt status.

Prototype: unsigned long ADCIntStatus(unsigned long ulBase, unsigned long
ulSequenceNum, tBoolean bMasked)

Parameters: ulBase is the base address of the ADC module. ulSequenceNum is
the sampling sequence number. bMasked is false if raw interrupt status is required
and true if masked interrupt status.

Description: This returns the interrupt status for the specified sample sequence.

Returns: The current raw or masked interrupt status.

• ADCSequenceDataGet Gets the captured data for a sample sequence.

Prototype: long ADCSequenceDataGet(unsigned long ulBase, unsigned long
ulSequenceNum, unsigned long *pulBuffer)

Parameters: ulBase is the base address of the ADC module. ulSequenceNum is
the sample sequence number. pulBuffer is the address where the data is required.

Stellaris®ARM®Cortex™-M3 Lab Manual 129

Description: This function copies data from the specified sample sequence output
FIFO to a memory-resident buffer. The number of samples available in the hardware
FIFO are copied into the buffer, which is assumed to be large enough to hold that
many samples.

Returns: None

11.4 Experiment 17

11.4.1 Objective

Measure the ambient temperature using onboard LM35 and display the temperature
magnitude by varying the intensity of the RGB LED.

Figure 11.4 Block diagram for Experiment 17

11.4.2 Program Flow

In this experiment, we wish to simulate the magnitude of the ambient temperature using
an RGB LED. We vary the intensity of the LED with changes in the ambient temperature.
Figure 11.4 shows the block diagram of the setup required for this experiment. For example,
in case the temperature is below 10 degrees Celsius the RGB LED is blue, and as the
temperature rises to above 40 degrees Celsius, the RGB LED turns red. LM35 gives an
output of 10 mV/Celsius. The algorithm is as follows:

1. Enable the system clock, GPIO and the ADC peripheral.
2. Sample temperature using the ADC Channel 7.
3. Scale the 10-bit value accordingly.
4. Depending on the temperature value, simulate it on the RGB LED using

hardware/software PWM.

130 Analog-to-Digital Converter

The program flow for the experiment is shown in Figure 11.5.

Figure 11.5 Program flow for Experiment 17

Stellaris®ARM®Cortex™-M3 Lab Manual 131

11.5 Experiment 18

11.5.1 Objective

Measure the ambient temperature using onboard LM35 and send the temperature values in
degrees Celsius over the UART for display in the terminal program.

11.5.2 Program Flow

Figure 11.6 Block diagram for Experiment 18

The aim of this experiment is to sample the ambient temperature using LM35 sensor, scale
it and send the value over UART0 for display on the serial monitor. This experiment also
aims to evaluate the ADC module along with the UART module. Figure 11.6 shows to the
block diagram of the setup required for this experiment. The algorithm to be followed for
the program is:

• Enable the system clock, UART and the ADC module.

• Sample the temperature using ADC Channel 7.

• Scale the 10-bit value accordingly.

• Transmit the temperature value over the UART for display on Serial Monitor.

A suggested program flow is shown in Figure 11.7.

132 Analog-to-Digital Converter

Figure 11.7 Program flow for Experiment 18

11.6 Experiment 19

11.6.1 Objective

Sample sound using a microphone connected to the ADC module and display the sound
level on LEDs.

Stellaris®ARM®Cortex™-M3 Lab Manual 133

11.6.2 Program Flow

Figure 11.8 Block diagram for Experiment 19

Figure 11.9 Program flow for Experiment 19

134 Analog-to-Digital Converter

Let us play some music for this experiment!
This experiment requires you to sense audio and depict its magnitude using LEDs. We

start by sensing audio using the onboard microphone and then, depending on its magnitude,
turn on the corresponding LED. Figure 11.8 shows the block diagram of the setup required
for this experiment. For example, if audio magnitude is high, turn on red; if it is low, turn
on blue, and if it is somewhere in between, turn on green. The algorithm for the experiment
is:

• Enable the system clock, the GPIO and the ADC module.
• Sample audio using the microphone connected to ADC Channel 6.
• Find the magnitude of the sample audio and turn on the corresponding LED.

The program flow for the experiment is shown in Figure 11.9.

11.7 Experiment 20

11.7.1 Objective

Sample sound using the onboard microphone and plot the amplitude vs. time waveform on
a computer. Any graphing application available on the computer can be used for plotting.

Figure 11.10 Block diagram for Experiment 20

Stellaris®ARM®Cortex™-M3 Lab Manual 135

Figure 11.11 Program flow for Experiment 20

11.7.2 Program Flow

In this experiment we sample sound using a microphone and plot amplitude vs. time
waveform for the sampled sound on a computer. Figure 11.10 shows the block diagram
of the setup required for this experiment. We use the ADC module to sample the sound,
scale it, and then send it over the UART to the computer. An application running on the
computer then draws the waveform. The algorithm to be followed is:

1. Enable the system clock, the UART and the ADC module.
2. Sample sound using microphone connected to ADC Channel 6.
3. Scale the 10-bit analog signal.
4. Send the transformed value to the computer using UART.

136 Analog-to-Digital Converter

There are many ways to plot waveforms on a computer. It is up to you what method you
want to employ for this experiment. Some of the methods are:

1. Store incoming value to a text file and then plot using Microsoft Excel.
2. Develop a custom application for communicating with the serial port.

A suggested program flow for the experiment is shown in Figure 11.11.

11.8 Exercises

1. Vary the intensity of LD5 by moving the potentiometer.
2. Vary the intensity of LD5, LD6 and LD7 by moving the potentiometer. When the

potentiometer is at its least resistance position, LD5 is dimly lit. When it is at the
centre, LD5 is at its full brightness but LD6 is dimly lit, and when it is completely
turned, all LEDs are lit at its brightest.

3. Filter the sound input using three filters of high, medium and low frequencies and
show the output on LEDs, one for each filter.

4. Sample sound and analyse its spectrum using FFT, and plot The amplitude vs.
frequency result on a computer.

5. Maintain time and sample the temperature values and output the current temperature
with a timestamp over the UART.

6. Do a simple voice profiling for ON and OFF using a microphone by counting the
number of zero crossings. If the user says ON, light up the LED, and in case of OFF,
turn it off.

7. Measure audio input and vary the intensity of an LED depending on the magnitude
of the voice sample.

8. Implement a two-player game where the person who shouts louder is the winner. Let
LD5 denote the first player to be the winner and LD6 the second player.

12 Power Management and
System Control

Power management and system control are very critical to the operation of Stellaris® Guru.
This chapter deals with the various components involved with these functions.

12.1 System Control

System control determines the overall operation of the device. It provides information about
the device, controls the clocking to the CPU and individual peripherals, and handles reset
detection and reporting.

The system control module provides the following capabilities.

• Device identification
• Reset control, power control, clock control
• System control (modes of operation of the device)

12.1.1 Device Identification

The StellarisWare library provides a layer of abstraction and hides unnecessary detail from
the end user. Various functions are pre-built in the library, which provide information
present in several read-only registers about version, part number, SRAM size, Flash
memory size, and other features. To display the Flash memory size and SRAM
size reading over the UART on the terminal, use SysCtlSRAMSizeGet(void) and
SysCtlFlashSizeGet(void) functions present in /driverlib/sysctl.c.

12.1.2 System Control

• Reset Control: The Stellaris® family of controllers has six sources of reset, namely:

137

138 Power Management and System Control

1. External reset button The external reset pin resets the microcontroller
including the CPU and all the on-chip peripherals. To improve noise immunity
and/or to delay reset at power up, the reset input may be connected to an RC
network.

2. Power-on Reset The internal power-on reset consists of a circuitry that
generates a reset signal when the supply voltage reaches a threshold value.

3. Internal brown-out reset A drop in the supply voltage resulting in the
assertion of the brown-out detector can be used to reset the controller.

4. Software-initiated reset Software reset can be used to reset a single
peripheral or the entire system.

5. Watchdog timer reset The watchdog timer module’s function is to prevent
the system from hanging. Its job is to ensure the safe running of the code and it
ensures that the system does not end up in an infinite loop leading to a hang-up.

6. Internal low-drop out regulator A reset can also be generated when the
internal low drop-out (LDO) regulator output goes unregulated. The internal
LDO integrated with the Stellaris® microcontroller is used to provide power
to the majority of the controllers internal logic. The regulated value can be
adjusted using software for power reduction.

• Clock Control: The Clock is the heart beat of any microcontroller system. There are
multiple clock sources for use in the device:

1. Internal Oscillator The internal oscillator is an on-chip clock source. It does
not require the use of external components. Its frequency is 12 MHz +/- 30%.

2. Main Oscillator The frequency-accurate clock rate is provided by the main
oscillator. To use the PLL (phase locked loop) module with the main oscillator
as the reference, it is imperative to use predefined external crystal of supported
frequency.

The internal system clock (SysClk) is derived from either of these two
sources or from the output of the main internal PLL, or the internal oscillator
divided by 4. The run-mode clock configuration register allows control for the
clocks in the run-time mode. It controls the clock source of the sleep and
deep-sleep modes. The PLL sources, clock divisors and the input crystal selection
are all controlled by the run-mode clock configuration register. The function
SysCtlClockSet(unsigned long ulConfig) configures the clocking of the device. The
function SysCtlMOSCConfigSet(unsigned long ulConfig) sets the configuration
of the main oscillator control.

Stellaris®ARM®Cortex™-M3 Lab Manual 139

12.1.3 Modes of Operation

There are three levels of operation in the Stellaris® Guru.

• Run Mode This is the normal mode of execution of the program. The
microcontroller executes code as normal and controls all the peripherals that are
currently enabled. The system clock can be any of the available sources, including
the PLL.

• Sleep Mode In the sleep mode the active peripherals remain clocked but the memory
and the processor are not clocked, and hence do not execute code. A configured
interrupt event can bring the device back from sleep mode to run mode.

• Deep-Sleep Mode In deep-sleep mode the clock frequency of the active peripherals
may change (depending on the run-mode clock configuration) in addition to the
processor clock being stopped. An interrupt returns the device to run mode from
one of the sleep modes. Any properly configured interrupt event in the system will
bring the processor back into the run mode.

12.2 Experiment 21

12.2.1 Objective

To evaluate the various sleep modes of the ARM® by putting the core in sleep and
deep-sleep modes.

12.2.2 Program Flow

This experiment explains how to put the processor in sleep and deep-sleep modes. A button
is pressed to generate an interrupt that puts the processor in sleep or deep-sleep modes. The
same button is used to generate an interrupt to put the processor back in run mode. The
algorithm to be followed is:

1. Enable the system clock and GPIO port E module.
2. Set internal pull ups on PE0 and enable interrupts for it.
3. When the pin is asserted, i.e., an interrupt is generated in the ISR, disable clock

gating to GPIO Port E and enable the port for operation in sleep/deep-sleep modes.
Put the processor to sleep/deep sleep.

4. When the pin is asserted again, reset the system to put the processor back into run
mode.

In Figure 12.1, a suggested program flow for the experiment is given. Note that this
program flow is drawn for putting the processor to sleep mode, although the same can be
ported for putting the processor to deep-sleep mode.

140 Power Management and System Control

Figure 12.1 Program flow for Experiment 21

Stellaris®ARM®Cortex™-M3 Lab Manual 141

12.2.3 Suggested StellarisWare API Function Calls

• SysCtlPeripheralClockGating Controls the peripheral clock gating in sleep and
deep-sleep modes.
Prototype: void SysCtlPeripheralClockGating(tboolean bEnable)

Parameters: bEnable is a boolean that is True if the sleep and deep-sleep peripheral
configuration should be used, and False otherwise.

Description: This function controls how peripherals are clocked when the processor
goes into sleep- or deep-sleep modes. By default, the peripherals are clocked the
same as in the run mode; if peripherals clock gating is enabled, they are clocked
according to the configuration set by SysCtlPeripheralSleepEnable(),
SysCtlPeripheralSleepDisable(), SysCtlPeripheralDeepSleepEna-

ble(), and SysCtlPeripheralDeepSleepDisable(), which are explained
further in this section.

Returns: None

• SysCtlPeripheralSleepEnable Enable a peripheral in sleep mode.

Prototype: void SysCtlPeripheralSleepEnable(unsigned long ulPeri-

pheral)

Parameters: ulPeripheral is the peripheral to be enabled in sleep mode.

Description: This function allows a peripheral to be operating when the processor
goes into sleep mode. The clock gating to a peripheral in sleep mode must be enabled
before using this function.

The ulPeripheral parameter can be any of the following macros,

SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOC,

SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_UART0 etc.

Returns: None

• SysCtlSleep Puts the processor into sleep mode.

Prototype:void SysCtlSleep(void)

Parameters: None

Description: This function places the processor into sleep; it will not return until
the processor returns to the run mode. The peripherals that are enabled using
SysCtlPeripheralSleepEnable continue to function and can wake up the
processor.

Returns: None

142 Power Management and System Control

• SysCtlPeripheralDeepSleepEnable Enables a peripheral in deep-sleep mode.

Prototype: void SysCtlPeripheralDeepSleepEnable(unsigned long
ulPeripheral)

Parameters: ulPeripheral is the peripheral to be enabled in deep-sleep mode.

Description: This function allows a peripheral to continue operating when the
processor goes into deep-sleep mode. Since the clocking configuration of the device
may change, not all peripherals can safely continue operating while the processor
is in sleep mode. Deep-sleep-mode clocking of peripherals must be enabled using
SysCtlPeripheralClockGating.

The ulPeripheral parameter can be any of the following macros.

SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOC,

SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_UART0 etc.

Returns: None

• SysCtlDeepSleep Puts the processor in deep-sleep mode.

Prototype: void SysCtlDeepSleep(void)

Parameters: None

Description: This function places the processor into deep-sleep mode; it will not
return until the processor returns to the run mode. The peripherals that are enabled
via SysCtlPeripheralDeepSleepEnable() continue to operate and can wake
up the processor.

Returns: None

• SysCtlReset Resets the device.

Prototype: void SysCtlReset(void)

Parameters: None

Description: This function will perform a software reset of the entire device. The
processor and all peripherals will be reset and all device registers will return to their
default values.

Returns: None

12.3 Experiment 22

12.3.1 Objective

Real-time alteration of system clock using the PLL module.

Stellaris®ARM®Cortex™-M3 Lab Manual 143

Figure 12.2 Program flow for Experiment 22

12.3.2 Program Flow

In all the experiments performed so far, setting up the system clock has been the
fundamental step in every program. You must have noticed that we set up the system
clock initially and then the rest of the program code followed. Can you think of any reason
why SysCtlClockSet goes before other code? Is it possible to set up the system clock
anywhere else in your program code? Can one alter the system clock later in application
code? This experiment answers all of these questions.

The TI Stellaris® ARM® microcontroller uses phase locked loops (PLL) to generate
several frequencies for use as system clock from a fixed-frequency external crystal. The
answer to why SysCtlClockSet goes first is rather trivial. We must tell the processor as
to which clock source we intend to use before it can start decoding instructions.

To answer the second question, think of a scenario when we start executing instructions
without defining our clock source. Naturally, the processor will function at an indeterminate
frequency. However, this is not the case. The architecture is designed to use a default clock

144 Power Management and System Control

source if SysCtlClockSet is undefined. For the ARM®, the default is the external crystal
of fixed frequency. So, whenever we call SysCtlClockSet, we are reconfiguring the
processor to use the PLL module as the default source. Hence, it is possible to set up the
system clock anywhere in the program code, even in the application loop section, as this
way, we are just reconfiguring our clock settings and not tampering with the operation of
the processor.

The answer to the third question is evident now. If we can set the system clock anywhere
in our program code, we can do it so multiple times and vary our clock frequency. Indeed,
this is the solution we employ when we want to put the processor in a low power state, as
power is proportional to the square of the frequency. This experiment demonstrates how
we can alter the system clock in real time in our program code. We know that the speed
of execution of a for loop to generate delays is dependent on the system clock frequency.
If we increase the system frequency, the for loop executes faster and vice versa. In the
experiment, we alter the system clock frequency and see its effect on the blinking rate of
an LED which uses a for loop for generating delays. The algorithm for the experiment is:

1. Enable the system Clock for a frequency of 50 MHz.
2. Enable GPIO port C and set the data direction of PC5 to output.
3. Set up a counter to hold an integer value.
4. Blink the LED, LD7(PC5), with delays generated using a for loop for decrementing

the counter.
5. Make a call to SysCtlClockSet and change the system frequency to 25 MHz.
6. With the same count in the counter as before, make the LED blink with delays

generated using a for loop.
7. Vary the system frequency and notice the effect on the blinking rate.

A suggested program flow is shown in Figure 12.2.

12.4 Exercises

1. Maintain an alarm using the timer module. The alarm and the current time setting
are received over the UART. The processor is put into sleep mode with the timer
running, and generating an interrupt every second which wakes up the processor.
After incrementing the current time it goes back into sleep mode. When the current
time equals the alarm time, LD5 is lit up and the processor goes back to sleep mode.

2. Evaluate the different reset modes and display the latest reset source using LEDs.
In case of power-on-reset, LD5 is lit up. When reset is done using the Reset switch,
LD6 is lit up. Switch S2 enables the watchdog timer and if reset is caused by the
watchdog, LD7 is lit up. (Hint: use function SysCtlResetCauseGet())

End Notes

1. Official Arduino website, http://www.arduino.cc

2. ARM® Cortex™-M3 Technical Reference Manual, Revision r2p1

3. Joint Test Action Group, http://www.jtag.com

4. Bray ++ Serial Terminal, https://sites.google.com/site/terminalbpp

5. Dhananjay V Gadre and Sheetal Vashist, LED senses and displays ambient-light
intensity, EDN, 9 November 2006, www.edn.com/article/CA6387024

6. Shields are add-on boards mounted on top of the Arduino PCB for extending its
capabilities.
http: /arduino.cc/en/Main/Arduino_Shields

7. http://www.eclipse.org/

8. Sourcery CodeBench Lite Edition is free, unsupported version of Sourcery
CodeBench provided by Mentor Graphics.
http://www.mentor.com/embedded-software/sourcery-tools/sourcery

-codebench/editions/ lite-edition/

9. This is an open source Eclipse CDT Managed Build Extensions for GNU ARM®

toolchains.
http://sourceforge.net/projects/gnuarmeclipse/

10. Future Technology Devices International, http://ftdichip.com

11. For an 8-bit port, if we want to set bits 2, 4, 6 as outputs and the rest as inputs, the
bit-packed representation will be denoted by 0b01010100 or 0×54.

12. Keil Embedded Development Tools, http://www.keil.com

13. IAR Systems, http://www.iar.com

14. Code Red Technologies, http://www.code-red-tech.com

15. Code Composer Studio, http://www.ti.com/tool/ccstudio

145

Bibliography

If you wish to read more about the ARM® processor family and specifically, more about
the Cortex™- M3, we recommend to you some good reading material below, in no specific
order of preference. These books and articles have been used in the development of this
manual also.

• Joseph Yiu, The Definitive Guide to the ARM® Cortex™-M3, Second Edition,
Elsevier Inc., 2010.

• Steve Furber, ARM® System-On-A-Chip Architecture, Second Edition, Addison
Wesley, 2000.

• Andrew N. Sloss, Dominic Symes and Chris Wright, ARM® System Developers

Guide: Designing and Optimizing System Software, Elsevier Inc., 2004.

• William Hohl, ARM® Assembly Language, CRC Press, 2009.

• Jonathan M. Valvano, Embedded System and Real Time Interfacing to the ARM®

Cortex™-M3, Create Space, 2011.

• StellarisWare Peripheral Driver Library User Guide, Build 8555, Texas Instruments.

• Wikipedia article on Linear Feedback Shift Register:
http://en.wikipedia.org/wiki/Linear_feedback_shift_register

146

Index

ADC (analog-to-digital convertor), 4
ADCIntClear, 128
ADCIntStatus, 128
ADCSequenceDataGet, 128
ADCSequenceEnable, 128
ADCSequenceStepConfigure, 127
API (application programming interface), 65
Arduino, 1, 21, 26, 31
ARM®, 1
ARMv7, 6
assemblers, 33
assembling, 36

bit-banding, 11
brownout, 18

compilers, 33
compiling, 35
controllers, 138
Cortex™-M3, 6
counter, 8, 97

DAC (digital-to-analog converter), 4
debugger, 37
direct register access model, 66
duty cycles, 83

Eclipse, 37
exception, 10, 91
external peripheral interface, 13

FIFO, 111
framing, 113
FT232, 26, 112
FTDI, 38
full duplex, 112

GCC, 37

general-purpose timer module, 17, 97, 100
GNUARM plug-in, 37
GPIO (general purpose input/output), 17, 26
GPIOIntTypeSet, 94
GPIOPadConfigSet, 77
GPIOPinIntClear, 93
GPIOPinIntEnable, 93, 95
GPIOPinRead, 71
GPIOPinTypeGPIOInput, 77
GPIOPinTypeGPIOOutput, 74
GPIOPinWrite, 74
GPIOPortIntClear, 93
GPIOPortIntRegister, 93
Guru, 1

half duplex, 112
Harvard architecture, 6

I2C, 14, 17, 18
IDE (integrated development environment),

26, 31
IntEnable, 95
interrupt, 89, 91
interrupt mask registers, 10
IntMasterEnable, 70, 96
ISA (instruction set architecture), 8
ISR (interrupt service routines), 4, 89

JTAG, 18, 25

LDO, 1, 20, 28–30
LED, 4, 28–30, 57, 61
LFSR (linear feedback shift register), 87
link register, 9, 10
linking, 36
LM Flash programmer, 3, 31
LM35, 20
LM358, 24

147

148 Index

low dropout, 22

memory map, 11
MPU (memory protection unit), 8

non-maskable interrupt, 90
NVIC (nested vector interrupt controller), 8

op-amp, 24
oversampling, 123

PLL (phase locked loops), 56, 138, 143
pipeline, 6
potentiometer, 5, 10, 31
power-on reset, 18, 38
privileged mode, 11
program counter, 9, 10
PWM (pulse width modulation), 4, 17, 30,

83, 97, 100

random number, 86
register access model, 57
reset, 10, 18, 20, 24, 70, 89, 137
RS232, 112

sample-and-hold, 124
sampling, 123
serial, 2, 13, 26, 38, 67, 111
shields, 1, 31
software driver model, 66, 67
Sourcery, 37, 42
Sourcery CodeBench Lite, 2, 31, 37
stack pointer, 9, 89
status register, 9, 10, 100
Stellaris, 1
StellarisWare, 4
synchronous serial interface, 14, 17
SysCtlClockGet, 69
SysCtlClockSet, 67

SysCtlDeepSleep, 142
SysCtlDelay, 70
SysCtlPeripheralClockGating, 141
SysCltPeripheralDeepSleepEnable, 142
SysCtlPeripheralEnable, 69
SysCtlPeripheralSleepEnable, 141
SysCtlReset, 70
system control block, 8
SysTick, 8
SysTickEnable, 103
SysTickPeriodSet, 103
SysTickValueGet, 103

temperature sensor, 17, 20, 31, 123
thread mode, 10
Thumb state, 10
Thumb-2, 7, 8
timer, 97
TimerConfigure, 104
TimerDisable, 107
TimerEnable, 107
TimerLoadGet, 105
TimerLoadSet, 105
TimerMatchSet, 106
toolchain, 33

UART (universal asynchronous
receiver/transmitter), 4, 111

UARTCharGet, 116
UARTCharPut, 116
UARTConfigSetExpClk, 114
USB, 1, 14, 15, 20, 28

watchdog, 97, 99
WatchdogEnable, 109
WatchdogIntClear, 109
WatchdogReloadSet, 108
WatchdogResetEnable, 109

