
SimpleCAR: An Efficient Bug-Finding Tool Based
On Approximate Reachability

Jianwen Li1, Rohit Dureja1, Geguang Pu2, Kristin Y. Rozier1, and
Moshe Y. Vardi3

1 Iowa State University, Ames, IA, USA
2 East China Normal University, Shanghai, China

3 Rice University, Houston, TX, USA

Abstract. We present a new safety hardware model checker SimpleCAR
that serves as a reference implementation for evaluating Complemen-
tary Approximate Reachability (CAR), a new SAT-based model check-
ing framework inspired by classical reachability analysis. The tool gives
a “bottom-line” performance measure for comparing future extensions
to the framework. We demonstrate the performance of SimpleCAR on
challenging benchmarks from the Hardware Model Checking Competi-
tion. Our experiments indicate that SimpleCAR is particularly suited for
unsafety checking, or bug-finding ; it is able to solve 7 unsafe instances
within 1 hour that are not solvable by any other state-of-the-art tech-
niques, including BMC and IC3/PDR, within 8 hours. We also identify a
bug (reports safe instead of unsafe) and 48 counterexample generation
errors in the tools compared in our analysis.

1 Introduction

Model checking techniques are widely used in proving design correctness, and
have received unprecedented attention in the hardware design community [9, 16].
Given a system model M and a property P , model checking proves whether or
not P holds for M . A model checking algorithm exhaustively checks all behav-
iors of M , and returns a counterexample as evidence if any behavior violates the
property P . The counterexample gives the execution of the system that leads to
property failure, i.e., a bug. Particularly, if P is a safety property, model checking
reduces to reachability analysis, and the provided counterexample has a finite
length. Popular safety checking techniques include Bounded Model Checking
(BMC) [10], Interpolation Model Checking (IMC) [21], and IC3/PDR [12, 14]. It
is well known that there is no “universal” algorithm in model checking; different
algorithms perform differently on different problem instances [7]. BMC outper-
forms IMC on checking unsafe instances, while IC3/PDR can solve instances that
BMC cannot and vice-versa. [19]. Therefore, BMC and IC3/PDR are the most
popular algorithms in the portfolio for unsafety checking, or bug-finding.

Complementary Approximate Reachability (CAR) [19] is a SAT-based model
checking framework for reachability analysis. Contrary to reachability analysis
via IC3/PDR, CAR maintains two sequences of over- and under- approximate
reachable state-sets. The over-approximate sequence is used for safety check-
ing, and the under-approximate sequence for unsafety checking. CAR does not



require the over-approximate sequence to be monotone, unlike IC3/PDR. Both
forward (Forward-CAR) and backward (Backward-CAR) reachability analysis are
permissible in the CAR framework. Preliminary results show that Forward-CAR
complements IC3/PDR on safe instances [19].

We present, SimpleCAR, a tool specifically developed for evaluating and ex-
tending the CAR framework. The new tool is a complete rewrite of CARChecker
[19] with several improvements and added capabilities. SimpleCAR has a lighter
and cleaner implementation than CARChecker. Several heuristics that aid Forward-
CAR to complement IC3/PDR are integrated in CARChecker. Although useful,
these heuristics make it difficult to understand and extend the core functionali-
ties of CAR. Like IC3/PDR, the performance of CAR varies significantly by using
heuristics [17]. Therefore, it is necessary to provide a basic implementation of
CAR (without code-bloating heuristics) that serves as a “bottom-line” perfor-
mance measure for all extensions in the future. To that end, SimpleCAR differs
from CARChecker in the following aspects:

– Eliminates all heuristics integrated in CARChecker except a configuration
option to enable a IC3/PDR-like clause “propagation” heuristic.

– Uses UNSAT cores from the SAT solver directly instead of the expensive
minimal UNSAT core (MUC) computation in CARChecker.

– Poses incremental queries to the SAT solver using assumptions;
– While CARChecker contributes to safety checking [19], SimpleCAR shows a

clear advantage on unsafety checking.

We apply SimpleCAR to 748 benchmarks from the Hardware Model Checking
Competition (HWMCC) 2015 [2] and 2017 [3], and compare its performance to
reachability analysis algorithms (BMC, IMC, 4×IC3/PDR, Avy [22], Quip [18]) in
state-of-the-art model checking tools (ABC, nuXmv, IIMC, IC3Ref). Our extensive
experiments reveal that Backward-CAR is particularly suited for unsafety check-
ing: it can solve 8 instances within a 1-hour time limit, and 7 instances within a
8-hour time limit not solvable by BMC and IC3/PDR. We conclude that, along
with BMC and IC3/PDR, CAR is an important candidate in the portfolio of un-
safety checking algorithms, and SimpleCAR provides an easy and efficient way to
evaluate, experiment with, and add enhancements to the CAR framework. We
identify 1 major bug and 48 errors in counterexample generation in our evaluated
tool set; all have been reported to the tool developers.

2 Algorithms and Implementation

We present a very high-level overview of the CAR framework (refer [19] for de-
tails). CAR is a SAT-based framework for reachability analysis. It maintains
two over- and under- approximate reachable state sequences for safety and un-
safety checking, respectively. CAR can be symmetrically implemented either in
the forward (Forward-CAR) or backward (Backward-CAR) mode. In the forward
mode, the F-sequence (F0, F1, . . . , Fi) is the over-approximated sequence, while
the B-sequence (B0, B1, . . . , Bi) is under-approximated. The roles of the F- and



B- sequence are reversed in the backward mode. We focus here on the backward
mode of CAR, or Backward-CAR (refer [19] for Forward-CAR)

2.1 High-level Description of Backward-CAR

Table 1: Sequences in Backward-CAR.

F-sequence
(under)

B-sequence
(over)

Init F0 = I B0 = ¬P
Constraint Fi+1 ⊆ R(Fi) Bi+1 ⊇ R−1(Bi)
Safety Check - ∃i ·Bi+1 ⊆

⋃
0≤j≤i Bj

Unsafety Check ∃i · Fi ∩ ¬P 6= ∅ -

A frame Fi in the F-sequence
denotes the set of states that
are reachable from the initial
states (I) in i steps. Similarly,
a frame Bi in the B-sequence
denotes the set of states that
can reach the bad states (¬P )
in i steps. Let R(Fi) represent
the set of successor states of Fi, and R−1(Bi) represent the set of predecessor
states of Bi. Table 1 shows the constraints on the sequences and their usage in
Backward-CAR for safety and unsafety checking.

Alg. 1 High-level description of Backward CAR

1: F0 = I, B0 = ¬P , k = 0;
2: while true do
3: while S(B) ∧R(S(F )) 6= ∅ do
4: update F - and B- sequences.
5: if ∃i · Fi ∩ ¬P 6= ∅ then return unsafe;

6: perform propagation on B-sequence (optional);
7: if ∃i ·Bi+1 ⊆

⋃
0≤j≤i

Bj then return safe;

8: k = k + 1 and Bk = ¬P ;

Let S(F ) =
⋃
Fi and

S(B) =
⋃
Bi. Alg. 1 gives a

description of Backward-CAR.
The B-sequence is extended
exactly once in every itera-
tion of the loop in lines 2–
8, but the F-sequence may
be extended multiple times in
each loop iteration in lines 3–
5. As a result, CAR normally
returns counterexamples with longer depth compared to the length of the B-
sequence. Due to this inherent feature of the framework, CAR is able to comple-
ment BMC and IC3/PDR on unsafety checking.

2.2 Tool Implementation

SimpleCAR is publicly available [5, 6] under the GNU GPLv3 license. The tool
implementation is as follows:

– Language: C++11 compilable under gcc 4.4.7 or above.

– Input: Hardware circuit models expressed as and-inverter graphs in the
aiger 1.9 format [11] containing a single safety property.

– Output: “1” (unsafe) to report the system violates the property, or “0”
(safe) to confirm that the system satisfies the property. A counterexample
in the aiger format is generated if run with the -e configuration flag.

– Algorithms: Forward-CAR and Backward-CAR with and without the prop-
agation heuristic (enabled using the -p configuration flag).

– External Tools: Glucose 3.0 [8] (based on MiniSAT [15]) is used as the
underlying SAT solver. Aiger tools [1] are used for parsing the input aiger
files to extract the model and property information, and error checking.



– Differences with CARChecker [19]: The Minimal Unsat Core (MUC) and
Partial Assignment (PA) techniques are not utilized in SimpleCAR, which
allows the implementation to harness the power of incremental SAT solving.

3 Experimental Analysis

3.1 Strategies

Tools. We consider five model checking tools in our evaluation: ABC 1.01 [13],
IIMC 2.04, Simplic3 [17] (IC3 algorithms used by nuXmv for finite-state systems5),
IC3Ref [4], CARChecker [19], and SimpleCAR. For ABC, we evaluate BMC (bmc2),
IMC (int), and PDR (pdr). There are three different versions of BMC in ABC:
bmc, bmc2, and bmc3. We choose bmc2 based on our preliminary analysis since
it outperforms other versions. Simplic3 proposes different configuration options
for IC3. We use the three best candidate configurations for IC3 reported in [17],
and the Avy algorithm [22] in Simplic3. We consider CARChecker as the original
implementation of the CAR framework and use it as a reference implementation
for SimpleCAR. A summary of the tools and their arguments used for experi-
ments is shown in Table 2. Overall, we consider four categories of algorithms
implemented in the tools: BMC, IMC, IC3/PDR, and CAR.

Benchmarks. We evaluate all tools against 748 benchmarks in the aiger format
[11] from the SINGLE safety property track of the HWMCC in 2015 and 2017.

Error Checking. We check correctness of results from the tools in two ways:

1. We use the aigsim [1] tool to check whether the counterexample generated
for unsafe instances is a real counterexample by simulation.

2. For inconsistent results (safe and unsafe for the same benchmark by at least
two different tools) we attempt to simulate the unsafe counterexample, and
if successful, report an error for the tool that returns safe (surprisingly, we
do not encounter cases when the simulation check fails).

Platform. Experiments were performed on Rice University’s DavinCI cluster,
which comprises of 192 nodes running at 2.83GHz, 48GB of memory and running
RedHat 6.0. We set the memory limit to 8GB with a wall-time limit of an hour.
Each model checking run has exclusive access to a node. A time penalty of one
hour is set for benchmarks that cannot be solved within the time/memory limits.

3.2 Results

Error Report. We identify one bug in simplic3-best3: reports safe instead of
unsafe, and 48 errors with respect to counterexample generation in iimc-quip

algorithm (26) and all algorithms in the Simplic3 tool (22). At the time of writing,
the bug report sent to the developers of Simplic3 has been confirmed. In our
analysis, we assume the results from these tools to be correct.

4 We use version 2.0 available at https://ryanmb.bitbucket.io/truss/ – similar to the
version available at https://github.com/mgudemann/iimc with addition of Quip [18].

5 Personal communication with Alberto Griggio.



Table 2: Tools and algorithms (with category) evaluated in the experiments.
Tool Algorithm Configuration Flags

ABC
BMC (abc-bmc) -c ‘bmc2’

IMC (abc-int) -c ‘int’

PDR (abc-pdr) -c ‘pdr’

IIMC
IC3 (iimc-ic3) -t ic3 --ic3 stats --print cex --cex aiger

Quip [18] (iimc-quip) -t quip --quip stats --print cex --cex aiger

IC3Ref IC3 (ic3-ref) -b

Simplic3

IC3 (simplic3-best1)
-s minisat -m 1 -u 4 -I 0 -O 1 -c 1 -p 1 -d 2

-G 1 -P 1 -A 100

IC3 (simplic3-best2)
-s minisat -m 1 -u 4 -I 1 -D 0 -g 1 -X 0 -O 1

-c 0 -p 1 -d 2 -G 1 -P 1 -A 100

IC3 (simplic3-best3)
-s minisat -m 1 -u 4 -I 0 -O 1 -c 0 -p 1 -d 2

-G 1 -P 1 -A 100 -a aic3

Avy [22] (simplic3-avy) -a avy

CARChecker
Forward CAR? (carchk-f) -f

Backward CAR? (carchk-b) -b

SimpleCAR

Forward CAR† (simpcar-f) -f -e

Backward CAR† (simpcar-b) -b -e

Forward CAR‡ (simpcar-fp) -f -p -e

Backward CAR‡ (simpcar-bp) -b -p -e

IC3/
PDR

CAR

? with heuristics for minimal unsat core (MUC) [20], partial assignment [23], and propagation.
† no heuristics
‡ with heuristic for PDR-like clause propagation

BMC IMC IC3/PDR CAR
Algorithm Category

0

50

100

150

N
um

be
ro

fU
ns

af
e

B
en

ch
m

ar
ks

147
131 136

120

9

15
6

9

14
5

8

12
8

solved uniquely solved

Fig. 1: Number of benchmarks solved
by each algorithm category (run as a
portfolio). Uniquely solved benchmarks
are not solved by any other category.

Coarse Analysis. We focus our anal-
ysis to unsafety checking. Fig. 1 shows
the total number of unsafe bench-
marks solved by each category (as-
suming portfolio-run of all algorithms
in a category). CAR complements
BMC and IC3/PDR by solving 128
benchmarks of which 8 are not
solved by any other category. Al-
though CAR solves the least amount
of total benchmarks, the count of the
uniquely solved benchmarks is com-
parable to other categories. When the
wall-time limit (memory limit does
not change) is increased to 8 hours,
BMC and IC3/PDR can only solve one
of the 8 uniquely solved benchmarks by CAR. The analysis supports our claim
that CAR complements BMC/IC3/PDR on unsafety checking.

Granular Analysis. Fig. 2 shows how each algorithm in the IC3/PDR (Fig. 2a)
and CAR (Fig. 2b) categories performs on the benchmarks. simpcar-bp dis-
tinctly solves all 8 benchmarks uniquely solved by the CAR cate-
gory (Fig. 1), while no single IC3/PDR algorithm distinctly solves all
uniquely solved benchmarks in the IC3/PDR category. In fact, a portfo-



abc-pdr

simplic3-best1

simplic3-best2

simplic3-best3

simplic3-avy

iimc-ic3

iimc-quip

ic3-ref

0

25

50

75

100

125
N

um
be

ro
fU

ns
af

e
B

en
ch

m
ar

ks

102
124 127 130

101 91 74
109

6

10
8

6

13
0

6

13
3

4

13
4

4

10
5

4

95

6

11
5

solved distinctly solved

(a) Algorithms in IC3/PDR category

carchk-f

carchk-b

simpcar-f

simpcar-b

simpcar-fp

simpcar-bp

0

25

50

75

100

125

N
um

be
ro

fU
ns

af
e

B
en

ch
m

ar
ks

64 105
11

115
11

113

64

1

10
6

5

12
0

8

12
1

solved distinctly solved

(b) Algorithms in CAR category

Fig. 2: Number of benchmarks solved by every algorithm in a category. Dis-
tinctly solved benchmarks by an algorithm are not solved by any algorithm in
other categories. The set union of distinctly solved benchmarks for all algorithms
in a category equals the count of uniquely solved for that category in Fig. 1.

lio including at least abc-pdr, simplic3-best1, and simplic3-best2 solves all
8 instances uniquely solved by the IC3/PDR category. It is important to note
that SimpleCAR is a very basic implementation of the CAR framework compared
to the highly optimized implementations of IC3/PDR in other tools. Even then
simpcar-b outperforms four IC3/PDR implementations. Our results show
that Backward-CAR is a favorable algorithm for unsafety checking.

Analysis Conclusions. Backward-CAR presents a more promising research di-
rection than Forward-CAR for unsafety checking. We conjecture that the per-
formance of Forward- and Backward- CAR varies with the structure of the aiger
model. Heuristics and performance-gain present a trade-off. simpcar-bp has a
better performance compared to the heuristic-heavy carchk-b. On the other
hand, simpcar-bp solves the most unsafe benchmarks in the CAR category,
however, adding the “propagation” heuristic effects its performance: there are
several benchmarks solved by simpcar-b but not by simpcar-bp.

4 Summary

We present SimpleCAR, a safety model checker based on the CAR framework for
reachability analysis. Our tool is a lightweight and extensible implementation
of CAR with comparable performance to other state-of-the-art tool implementa-
tions of highly-optimized unsafety checking algorithms, and complements exist-
ing algorithm portfolios. Our empirical evaluation reveals that adding heuristics
does not always improve performance. We conclude that Backward-CAR is a more
promising research direction than Forward-CAR for unsafety checking, and our
tool serves as the “bottom-line” for all future extensions to the CAR framework.

Acknowledgments. This work is supported by NSF CAREER Award CNS-
1552934, NASA ECF NNX16AR57G, NSF CCF-1319459, and NSFC 61572197
and 61632005 grants. Geguang Pu is also partially supported by MOST NKTSP
Project 2015BAG19B02 and STCSM Project No.16DZ1100600.



References

1. AIGER Tools. http://fmv.jku.at/aiger/aiger-1.9.9.tar.gz
2. HWMCC 2015. http://fmv.jku.at/hwmcc15/
3. HWMCC 2017. http://fmv.jku.at/hwmcc17/
4. IC3Ref. https://github.com/arbrad/IC3ref
5. SimpleCAR Source. https://github.com/lijwen2748/simplecar/releases/tag/v0.1
6. SimpleCAR Website. http://temporallogic.org/research/CAV18/
7. Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An Analy-

sis of SAT-Based Model Checking Techniques in an Industrial Environment. In:
CHARME (2005)

8. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: IJCAI (2009)

9. Bernardini, A., Ecker, W., Schlichtmann, U.: Where Formal Verification Can Help
in Functional Safety Analysis. In: ICCAD (2016)

10. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic Model Checking
Using SAT Procedures Instead of BDDs (1999)

11. Biere, A.: AIGER Format. http://fmv.jku.at/aiger/FORMAT
12. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: VMCAI (2011)
13. Brayton, R., Mishchenko, A.: ABC: An Academic Industrial-Strength Verification

Tool. In: CAV (2010)
14. Een, N., Mishchenko, A., Brayton, R.: Efficient Implementation of Property Di-

rected Reachability. In: FMCAD (2011)
15. Eén, N., Sörensson, N.: An extensible sat-solver. In: SAT (2004)
16. Golnari, A., Vizel, Y., Malik, S.: Error-tolerant processors: Formal specification

and verification. In: ICCAD (2015)
17. Griggio, A., Roveri, M.: Comparing Different Variants of the IC3 Algorithm for

Hardware Model Checking. IEEE Trans. Comput-Aided Design Integr. Circuits
Syst. 35(6), 1026–1039 (Jun 2016)

18. Ivrii, A., Gurfinkel, A.: Pushing to the Top. In: FMCAD (2015)
19. Li, J., Zhu, S., Zhang, Y., Pu, G., Vardi, M.Y.: Safety Model Checking with Com-

plementary Approximations. In: ICCAD (2017)
20. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In:

Sakallah, K., Simon, L. (eds.) Theory and Applications of Satisfiability Testing
- SAT 2011. Lecture Notes in Computer Science, vol. 6695, pp. 159–173. Springer
Berlin Heidelberg (2011)

21. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: CAV (2003)
22. Vizel, Y., Gurfinkel, A.: Interpolating Property Directed Reachability. In: CAV

(2014)
23. Yu, Y., Subramanyan, P., Tsiskaridze, N., Malik, S.: All-SAT Using Minimal Block-

ing Clauses. In: VLSID (2014)


