
Model checking large design spaces: Theory, tools, and experiments

by

Rohit Dureja

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Kristin Y. Rozier, Co-major Professor
Gianfranco Ciardo, Co-major Professor

Samik Basu
Robyn Lutz

Hridesh Rajan

The student author, whose presentation of the scholarship herein was approved by the
program of study committee, is solely responsible for the content of this dissertation. The
Graduate College will ensure this dissertation is globally accessible and will not permit

alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2020

Copyright © Rohit Dureja, 2020. All rights reserved.

ii

DEDICATION

To my family.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1
1.1 Motivation . 3
1.2 Design Space . 5
1.3 Design-Space Exploration . 8

1.3.1 Taxonomy . 10
1.3.2 Formal Methods . 12

1.4 Application Domains . 15
1.4.1 Functional Verification . 15
1.4.2 Incremental Verification . 16
1.4.3 Equivalence Checking . 17
1.4.4 Product-line Verification . 18

1.5 Contributions . 19
1.5.1 Design-Space Reduction . 20
1.5.2 Incremental Verification . 20
1.5.3 Multi-Property Verification . 21
1.5.4 Parallel Orchestration . 22

CHAPTER 2. DESIGN-SPACE REDUCTION . 24
2.1 Introduction . 25

2.1.1 Related Work . 28
2.1.2 Contributions . 29

2.2 Preliminaries . 30
2.2.1 Temporal Logic Model Checking . 30
2.2.2 Design-Space Model Checking . 32
2.2.3 Temporal Logic Satisfiability . 35
2.2.4 Modeling a Design Space . 35

2.3 Discovering Design-Space Dependencies . 36
2.3.1 Individual Model Redundancies . 36
2.3.2 Identifying Property Dependencies 43

2.4 Experimental Analysis . 47
2.4.1 Benchmarks . 48
2.4.2 Experiment Setup . 49
2.4.3 Experimental Results . 49

iv

2.5 Summary and Discussion . 53

CHAPTER 3. INCREMENTAL VERIFICATION 56
3.1 Introduction . 58

3.1.1 Related Work . 59
3.1.2 Contributions . 61

3.2 Preliminaries . 61
3.2.1 Safety Verification . 63
3.2.2 Property-Directed Reachability . 64
3.2.3 Problem Formulation . 65

3.3 Algorithm for Incremental Verification . 66
3.3.1 Information Learning . 66
3.3.2 Information Repair and Reuse . 68

3.4 Organizing the Design Space . 80
3.4.1 Hashing Techniques and Similarity Measure 81
3.4.2 Partial Model Ordering . 83
3.4.3 Property Grouping . 84

3.5 Experimental Analysis . 85
3.5.1 Benchmarks . 85
3.5.2 Experiment Setup . 86
3.5.3 Experimental Results . 87

3.6 Summary and Discussion . 94

CHAPTER 4. MULTI-PROPERTY VERIFICATION 96
4.1 Introduction . 98

4.1.1 Related Work . 100
4.1.2 Contributions . 101

4.2 Preliminaries . 101
4.2.1 Cone-of-Influence Computation . 102
4.2.2 Property Affinity . 104
4.2.3 Group Center and Grouping Quality 104
4.2.4 Localization Abstraction . 105

4.3 Structural Grouping of Properties . 105
4.3.1 Identical Cones of Influence . 107
4.3.2 Strongly Connected Components . 108
4.3.3 Hamming Distance . 111

4.4 Semantic Refinement of Property Groups . 118
4.4.1 Abstract Cone-of-Influence Computation 118
4.4.2 Semantic Partitioning . 121

4.5 Experimental Analysis . 121
4.5.1 Benchmarks . 121
4.5.2 Experiment Setup . 122
4.5.3 Experimental Results . 122

4.6 Summary and Discussion . 129

v

CHAPTER 5. PARALLEL ORCHESTRATION . 131
5.1 Introduction . 132

5.1.1 Related Work . 136
5.1.2 Contributions . 137

5.2 Preliminaries . 137
5.2.1 Affinity Analysis . 139
5.2.2 High-Affinity Property Grouping . 140

5.3 Grouping for Parallel Verification . 142
5.3.1 Property Grouping Algorithm . 142
5.3.2 Group Distribution Heuristics . 149

5.4 Localization for Redundancy Removal . 152
5.4.1 Fast-and-Lossy Localization . 155
5.4.2 Aggressive Localization . 156
5.4.3 Semantic Partitioning . 156

5.5 Experimental Analysis . 159
5.5.1 Benchmarks . 160
5.5.2 Localization Portfolio . 161
5.5.3 Experiment Setup . 163
5.5.4 Experimental Results . 164

5.6 Summary and Discussion . 167

CHAPTER 6. CONCLUSION AND DISCUSSION 170
6.1 Contribution Review . 171
6.2 Future Work . 172

6.2.1 Design-Space Reduction . 172
6.2.2 Incremental Verification . 172
6.2.3 Multi-Property Verification . 173
6.2.4 Parallel Orchestration . 173

BIBLIOGRAPHY . 174

vi

LIST OF FIGURES

Figure 1.1 Typical model-checking workflow for verification of systems. 3

Figure 1.2 Design space for an air-traffic control system 7

Figure 1.3 Model checking for large design spaces. 14

Figure 1.4 Incremental product development based on verification feedback. . . 16

Figure 1.5 Composite model construction for checking design equivalence . . . 17

Figure 1.6 Software product line representation for a vending machine with fea-
tures enabled by parameters . 19

Figure 2.1 Design space pruning for model checking large design spaces 27

Figure 2.2 Formal representation of a parameterized design space using a com-
binatorial transition system (CTS) 33

Figure 2.3 Modeling of a design space in the SMV language with constructs . . 35

Figure 2.4 Algorithm to find unset parameters in a partially configured CTS . . 39

Figure 2.5 Algorithm to generate minimal parameter configurations for a CTS . 41

Figure 2.6 Data structure to store dependencies between LTL properties to min-
imize the number of properties to check for a model 45

Figure 2.7 Algorithm to check minimal number of properties for a model 46

Figure 2.8 Discovering Design-Space Dependencies (D3) algorithm. 47

Figure 2.9 Performance evaluation of the D3 algorithm on 1,620 models for
NASA’s NextGen air-traffic control system’s design space 50

Figure 2.10 Number of properties checked for individual models 52

Figure 2.11 Minimum number of properties checked for individual models 53

Figure 3.1 Information learning and reuse across model-checking runs 57

vii

Figure 3.2 Information learning and reuse for incremental verification 67

Figure 3.3 FuseIC3 algorithm for incremental model-checking of design spaces . 69

Figure 3.4 Algorithm to repair saved reachable state approximations across model-
checking runs by clause manipulation 70

Figure 3.5 Basic checks to reuse information without performing repair 72

Figure 3.6 Algorithm to find all violating clauses in a frame sequence 74

Figure 3.7 Algorithm to repair violating clauses by adding literals 77

Figure 3.8 Algorithm to shrink clauses by removing excess literals 79

Figure 3.9 Hashing routine to find similar documents based on signatures . . . 83

Figure 3.10 Performance comparison between the FuseIC3 algorithm and current
state-of-the-art on NASA’s air-traffic control system’s design space . 89

Figure 3.11 Performance comparison between the FuseIC3 algorithm and current
state-of-the-art on hardware verification benchmarks 91

Figure 3.12 Performance impact on the FuseIC3 algorithm by varying similarity
levels between the models. 92

Figure 4.1 Typical methodology for multi-property verifications 97

Figure 4.2 Cones of influence of high- and low-affinity properties 99

Figure 4.3 Algorithm to compute the support bitvector for a property 103

Figure 4.4 Algorithm to group properties based on cones of influence 106

Figure 4.5 Algorithm to group properties based on identical cones of influence . 107

Figure 4.6 Algorithm to group properties based on strongly connected compo-
nents in the cones of influence . 109

Figure 4.7 Algorithm to cluster bitvectors based on Hamming distance 112

Figure 4.8 Algorithm to cluster n-bit numbers based on Hamming distance . . 113

Figure 4.9 Generate mapped bitvectors by mapping n-bit segments of bitvectors
to integer indexes for comparison . 114

viii

Figure 4.10 Algorithm to group properties based on Hamming distance between
support bitvectors for properties . 116

Figure 4.11 Partition a high-affinity group based on semantic information 119

Figure 4.12 Algorithm to semantically partition high-affinity groups based on
feedback from localization abstraction 120

Figure 4.13 Performance evaluation of high-affinity property grouping on selected
HWMCC benchmarks . 123

Figure 4.14 Impact of high-affinity grouping on end-to-end verification speedup
for selected HWMCC benchmarks. 124

Figure 4.15 Performance impact of property grouping on localization 126

Figure 5.1 Property partitioning vs. strategy exploration 134

Figure 5.2 Three-leveled grouping procedure for property partitioning 140

Figure 5.3 General algorithmic flow for property grouping 143

Figure 5.4 General algorithmic flow for rebalancing high-affinity groups 143

Figure 5.5 Property grouping algorithm for parallel verification 144

Figure 5.6 Algorithm to distribute property groups across parallel workers . . . 145

Figure 5.7 Algorithm to halve very large high-affinity groups 146

Figure 5.8 Algorithm for subdividing minimal-quality groups. 147

Figure 5.9 Algorithm to rollback high-affinity group to lower level 148

Figure 5.10 Procedure to dispatch properties across parallel workers. 151

Figure 5.11 Typical sequential equivalence checking setup 153

Figure 5.12 Generic sequential redundancy removal framework 154

Figure 5.13 Fast-and-Lossy localization strategy for property groups 157

Figure 5.14 Aggressive localization strategy for property groups 158

Figure 5.15 Property distribution in benchmarks used for evaluation of the pro-
posed parallel verification methodology 161

ix

Figure 5.16 Performance comparison of competing localization portfolios on se-
quential equivalence checking benchmarks 164

Figure 5.17 Performance of the proposed optimized localization portfolio on se-
quential equivalence checking benchmarks 165

Figure 5.18 Work distribution with optimized localization portfolio 165

Figure 5.19 Performance of the proposed optimized localization portfolio on a
very large sequential equivalence checking problem. 167

Figure 5.20 Performance comparison of competing localization portfolios on se-
lected HWMCC benchmarks . 168

x

LIST OF TABLES

Table 2.1 Performance evaluation of model checking NASA’s NextGen air traf-
fic control system’s design space using D3 algorithm 49

Table 2.2 Performance evaluation of model checking Boeing’s AIR6110 wheel
braking system’s design space using D3 algorithm 54

Table 3.1 Performance evaluation of the FuseIC3 algorithm on NASA’s NextGen
air-traffic control system’s design space 87

Table 3.2 Performance evaluation of the FuseIC3 algorithm on selected hard-
ware verification benchmarks from HWMCC 90

Table 3.3 Performance evaluation of the FuseIC3 algorithm on Boeing’s AIR6110
wheel braking system’s design space 93

Table 4.1 Performance evaluation of verifying high-affinity groups vs. verifying
properties one-by-one . 125

Table 4.2 Localization performance with semantic partitioning of groups . . . 127

Table 4.3 Performance comparison between high-affinity property grouping and
property grouping based on hierarchical clustering 127

Table 4.4 End-to-end verification speedup on debug bus designs with high-
affinity property grouping . 128

Table 5.1 Optimized six-process localization portfolio 162

Table 5.2 Utility of aggressive strategy processes in a portfolio. 166

xi

ABSTRACT

In the early stages of design, there are frequently many different models of the system

under development constituting a design space. The different models arise out of a need to

weigh different design choices, to check core capabilities of system versions with varying fea-

tures, or to analyze a future version against previous ones in the product line. Every unique

combinations of choices yields competing system models that differ in terms of assumptions,

implementations, and configurations. Formal verification techniques, like model checking,

can aid system development by systematically comparing the different models in terms of

functional correctness, however, applying model checking off-the-shelf may not scale due to

the large size of the design spaces for today’s complex systems. We present scalable algo-

rithms for design-space exploration using model checking that enable exhaustive comparison

of all competing models in large design spaces.

Model checking a design space entails checking multiple models and properties. Given

a formal representation of the design space and properties expressing system specifications,

we present algorithms that automatically prune the design space by finding inter-model

relationships and property dependencies. Our design-space reduction technique is compatible

with off-the-shelf model checkers, and only requires checking a small subset of models and

properties to provide verification results for every model-property pair in the original design

space. We evaluate our methodology on case-studies from NASA and Boeing; our techniques

offer up to 9.4× speedup compared to traditional approaches.

We observe that sequential enumeration of the design space generates models with small

incremental differences. Typical model-checking algorithms do not take advantage of this

xii

information; they end up re-verifying “already-explored” state spaces across models. We

present algorithms that learn and reuse information from solving related models against

a property in sequential model-checking runs. We formalize heuristics to maximize reuse

between runs by efficient “hashing” of models. Extensive experiments show that information

reuse boosts runtime performance of sequential model-checking by up to 5.48×.

Model checking design spaces often mandates checking several properties on individual

models. State-of-the-art tools do not optimally exploit subproblem sharing between prop-

erties, leaving an opportunity to save verification resource via concurrent verification of

“nearly-identical” properties. We present a near-linear runtime algorithm for partitioning

properties into provably high-affinity groups for individual model-checking tasks. The veri-

fication effort expended for one property in a group can be directly reused to accelerate the

verification of the others. The high-affinity groups may be refined based on semantic feed-

back, to provide an optimal multi-property localization solution. Our techniques significantly

improve multi-property model-checking performance, and often yield >4.0× speedup.

Building upon these ideas, we optimize parallel verification to maximize the benefits of

our proposed techniques. Model checking tools utilize parallelism, either in portfolio mode

where different algorithm strategies run concurrently, or in partitioning mode where disjoint

property subsets are verified independently. However, both approaches often degrade into

highly-redundant work across processes, or under-utilize available processes. We propose

methods to minimize redundant computation, and dynamically optimize work distribution

when checking multiple properties for individual models. Our techniques offer a median 2.4×

speedup for complex parallel verification tasks with thousands of properties.

1

CHAPTER 1. INTRODUCTION

Safety-critical systems have become an integral part of our daily lives. They fly our

planes, navigate autonomous vehicles, protect financial transactions, and even run our med-

ical devices. We are increasingly dependent on these systems whose failure might endanger

human life, lead to substantial economic loss, or cause extensive environmental damage.

There are several well-known examples of safety-critical system failures that have occurred

including the Ariane V launch failure [Dow97], the 2003 blackout of northeastern United

States [ASH07], the ‘failsafe mode’ bug in 1.9 million Toyota Prius cars that caused a mov-

ing car’s engine to stall [Koo14], and the more recent Boeing 737 Max’s MCAS failure [JH19].

How can we make sure that safety-critical systems of the future are safe? The ever-increasing

complexity of these life-critical hardware and software systems makes reasoning about safety

extremely difficult. As we push more transistors in our integrated circuits and make our

programming languages more expressive and high-level, guaranteeing safe operation of such

systems becomes inherently challenging. There is a significant need to develop scalable

techniques for specification, design and verification of critical systems.

We can use formal methods to guarantee safety of critical systems. Formal verification

techniques utilize mathematical logic to provide correctness checks and very high levels of

safety assurance. Their efficient usage guarantees that the designed system behaves according

to the specification, and more importantly guarantee that the system does not do anything

that is outside the specified behavior. It is important to note that the latter is considerably

harder: the verification algorithm has to enumerate all possible behaviors of the system

to check absence of any unspecified behaviors. Formal verification is exhaustive in nature,

i.e., the system behavior is evaluated over all possible inputs. The system under design

2

is modeled in a high-level expressive language, like System-C [BDBK09], Verilog [ver06],

or SMV [CCD+14], and specifications (design requirements) are expressed in mathematical

logic, like System Verilog Assertions (SVA) [sva18], Property Specification Language (PSL)

[psl10], or Linear Temporal Logic (LTL) [Pnu77]. The formal verification algorithm then

exhaustively checks the system model against the specification to demonstrate the presence

of bugs as well as the absence of bugs. On the other hand, time-honored techniques of

simulation and testing are useful debugging tools in the early stages of system design. These

methods evaluate the behavior of the system on a large, but rarely exhaustive, set of expected

inputs. The restricted set of testing inputs limits the number of bugs that can be uncovered

by these techniques: exhaustive evaluation of all possible inputs is often impractical for

very large designs. Simulation and testing can be used to demonstrate the presence of bugs

but never the absence of bugs. Moreover, the utility diminishes as the design is refined and

remaining bugs become fewer and more subtle, and require more time to uncover. It has been

proved that simulation and testing alone cannot guarantee high levels of reliability within

any realistic time period [BF93]. For some systems this is an acceptable risk. However, for

safety-critical systems, the absolute assurance that the system adheres to the specification

via exhaustive analysis of intended, unexpected and unintended behaviors is key to guarantee

reliability and safety. Therefore, formal verification complements simulation and testing to

provide ultra-reliable safety-critical systems.

While there are a range of formal verification techniques [DKW08, KG99], model-checking

has become one of the most widely-used formal method due to its automated nature and

ease-of-use [CHV18]. Model checking is the process through which a desired property (system

specification) is verified to hold for a given system model via an exhaustive enumeration of

all reachable states and the behaviors that cause transitions between these states. A model

checker will consider every possible combination of inputs and state, making the verification

equivalent to exhaustive testing of the model. If the specification is found to not hold in all

3

Figure 1.1: Model checking involves entering the system information (as a model) and
requirements into a model-checking tool. If there is disagreement between the model’s op-
eration and its requirements, the model checker returns a counterexample trace. Otherwise,
the system satisfies the specification

possible executions of the system, a counterexample is produced that shows an execution of

the system from the start state to an error state that violates the specification. The ability

to explain specification violation via counterexamples is a very helpful tool for debugging

the system design. Figure 1.1 shows a typical model-checking workflow. Model checking has

witnessed widespread industry adoption and has been used to verify systems such as air traffic

controllers [GCM+16], autopilots [MAW+12], CPU designs [Fix08, KGN+09], encryption

protocols [BCM18], financial transactions [PI17], medical equipment [JPM+12], network

infrastructure [ME04], and many systems that ensure human safety and prevent financial

loss.

1.1 Motivation

The technique of model-checking was developed independently by Clarke and Emerson in

1981 [CE81], and Quielle and Sifakis in 1982 [QS82]. Model checking provides a feasible and

comprehensible infrastructure that permits bug detection as well as verification for correct-

ness. Once the system model and properties have been determined, model-checking provides

“push-button” and “automatic” verification. The counterexample returned in the case where

4

a bug is found provides the necessary diagnostic feedback. The shallow learning curve of

model-checking has enabled its integration into industrial product life-cycles [GV08]; model

checking requires minimal levels of user interaction and specialized expertise when compared

to other methods of formal verification. However, certain systems that require finer-grained

control of the verification process may benefit from the use of alternative techniques, like

theorem proving that involves proving correctness using formal deduction that the system

model implies the desired properties. Nevertheless, model checking has several qualities that

make it the preferred formal method for verification of safety-critical systems:

1. The automatic high-quality counterexamples in model checking quickly provide a

wealth of insight into the detected faulty system behavior. However, the quality of

insight obtained from a negative result when using theorem proving is highly depen-

dent on the skill set of the person providing the proof.

2. While a methodology of designing a system hand-in-hand with its proof using theorem

proving has its merits, it cannot be readily automated. Model checking enables sep-

aration of system development from verification and debugging; the development and

verification teams can work in parallel, and regular back-and-forth between teams can

influence bug-fixes and future design decisions.

Since model checking requires the writing of formal properties, it has also helped fuel the

industrial adoption of property-based design, wherein formal specifications are written early

in the system-design process and communicated across all design phases [Roz16].

Model-checking technology has advanced considerably over the last three decades. Much

progress has been made from the early days of explicit-state model-checking that involves

exhaustive traversal of all reachable states of the system using graph-search algorithms, to

symbolic model-checking [BCM+90] that reasons over logical formulas representing reach-

able states and properties. Several algorithmic advances, including partial-order reduc-

5

tion [Pel18], compositional verification [GNP18], bi-simulation equivalences [Mil71], bounded

model checking [BCC+03], abstraction-refinement [DG18], and property-directed reachabil-

ity [Bra12, EMB11], have increased the complexity and size of systems that can be verified

using formal methods. Even though property-based design and model-checking for verifica-

tion requires more time and has a higher up-front cost (specialized expertise, formal modeling

and specification) compared to simulation or testing, the higher cost is outweighed by high-

levels of assurance provided by formal verification for critical systems where human-life or

safety is of utmost importance. However, the ever-increasing complexity and diversity of to-

day’s systems often evades the current capabilities of formal verification techniques. Formal

verification practitioners face a tradeoff: spend considerable time manually guiding “auto-

matic” model-checking using assume-guarantee reasoning, assumption tightening, constraint

learning etc., to verify properties versus quickly maximize the number of partially-verified

properties for a subset of model behaviors under relaxed assumptions or using bounded model

checking. While the latter is acceptable for some systems but not safety-critical systems, the

former is extremely important for safety-critical systems where maximizing reliability is the

primary goal. There is an urgent need to extend research in model checking that enables

verification of complex and challenging systems, and retains the push-button characteristic

of model checking.

1.2 Design Space

Several design choices or parameters dictate system architecture and features in the very-

early phases of system design. The system designer thoroughly evaluates different choices to

decide core system capabilities with varying features, analyze system performance, or analyze

a new system version against previous ones. Every unique combination of choices yields

competing systems that differ in terms of assumptions, implementations, and configurations.

6

The designer narrows down on the final system design after a thorough qualitative and

quantitative comparison of all competing systems. Each competing system must adhere to

system specifications, plus per-design-choice specifications. The set of competing system

designs under different parameter configurations constitute a design space. There are several

advantages to design complex systems as design spaces, including but not limited to:

1. Exhaustive enumeration: Exhaustive enumeration and evaluation of all design al-

ternatives. While domain-knowledge can help narrow the initial set of parameters, a

thorough comparison is required to discard, prioritize, or amend design choices based

on desired levels of system reliability.

2. System behavior: Provide better understanding of system behavior under different

assumptions and architectures, and evaluate inter-component interactions with differ-

ent parameter configurations.

3. Explore tradeoffs: Since every competing system must meet design specifications,

analysis of the design space can help determine the parameter configurations that meet

or violate specifications.

Figure 1.2 shows an air-traffic control system’s design space for ensuring no loss of separa-

tion between four aircraft in the airspace. The ground controller and on-board controllers (if

available) coordinate air traffic and trajectories to maintain safe flying distance. There can

be multiple types of aircraft in the airspace. The ground-separated aircraft rely on the ground

controller to maintain separation, while self-separated aircraft perform on-board separation-

assurance reasoning with inputs from both the ground controller and on-board controller.

Moreover, self-separated aircraft may communicate with other self-separated aircraft and

the ground controller, whereas ground-separated aircraft only communicate with the ground

controller. The exact trajectories and mitigation actions followed by the aircraft, in the case

7

Figure 1.2: Design-space for an air-traffic control system.

of a potential loss of separation, depend on the choice of collision detection and recovery algo-

rithms used by the ground and on-board controllers. Each design choice leads to a different

airspace scenario based on: 1) a mix of aircraft types (ground-separated vs. self-separated);

2) different control algorithms (on ground vs. on-board), 3) communication configurations

(communicate with ground vs. other aircraft), and; 4) different trajectory manipulation al-

gorithms in case of a potential loss of separation. All these scenario variations constitute the

design space of an air-traffic control system that maintains safe separation between different

types of aircraft. The system designer thoroughly evaluates all design choices to deter-

mine scenarios that meet or violate design specifications. The specifications can range from

low-level properties that specify system behavior for certain choices (e.g., ground-separated

aircraft can always communicate with the ground controller, self-separated aircraft can al-

ways communicate with each other) to more encompassing properties that specify overall

system behavior (e.g., there is no loss of separation between aircraft, a potential loss of

8

separation can always be detected by the ground or on-board controllers). The system de-

signer can limit certain combinations of design choices, for e.g., choice of on-board control

algorithm in a scenario with all ground-separated aircraft (these types of aircraft rely on

the ground controller for separation assurance), however, such restrictions require very deep

domain knowledge. Nevertheless, the different combinations of design choices often lead to

a combinatorial explosion in the size of the design space.

1.3 Design-Space Exploration

The systematic analysis of discovering and evaluating design choices for a system under

development is referred to design-space exploration (DSE). The exploration process is very

complex since the same system functionality can be implemented in a variety of ways. The

tradeoff between implementation choices, different parameter configurations, and evaluation

metrics forms the basis of design-space exploration. Design-space exploration has many uses

in the safety-critical systems engineering, including [KJS11]:

1. Rapid prototyping: The different parameter configurations generate a set of system

prototypes. Analysis and profiling of these prototypes can impact design decisions

while taking complex design dynamics into account.

2. Objective optimization: The different system prototypes can be compared in terms

of power consumption, performance, cost, and safety. This helps eliminate inferior

designs and collect a set of candidate prototypes that may be studied further.

3. System integration: The compatibility of multiple component behaviors and config-

urations of a system under varying parameter configurations can be analyzed to find

a subset of configurations that satisfy design specifications.

9

Design-space exploration must be performed carefully due to the large number of design

alternatives to be explored to determine which design configurations are ‘optimal’, i.e., meet

design specifications. Design-space exploration may either be driven manually, with the

system designer choosing parameter configurations based on intuition or domain-knowledge,

or automatically, wherein a tool explores and evaluates all possible parameter configurations

based on selected evaluation metrics. The manual approach to design-space exploration is

tedious, error-prone, and does not scale for design spaces with millions of alternatives. An

effective automatic design-space exploration framework consists of three ingredients [KJS11]:

1. Design representation: Automated design-space exploration requires a suitable for-

mal representation of the design. The complex system may have a large number of

design specification constraints that must be satisfied by every valid design alterna-

tive. The representation should be expressive enough to capture complex specification

constraints: arithmetic operations, Boolean expressions, and datatype constraints.

2. Exploration method: The large number of alternatives make one-by-one ad-hoc

enumeration of designs undesirable as some alternatives may be considered similar.

The framework must provide a method for pruning the design space and quickly nav-

igating to distinct and interesting designs, thereby, reducing the overall design-space

exploration effort.

3. Analysis techniques: The framework must use machine-assisted techniques for dis-

covering potential design candidates, and also check them against design specifications.

These techniques must scale with the number and complexity of specifications while

maintaining reasonable computational costs.

Design-space exploration has been effectively used in the engineering of several embedded

systems [Pim17, YCY20], network architectures [LXX+09, ZBG20], communication protocols

10

[DR20a], processor protocols [HC13, SSZ11, KJCH19], and compiler optimizations [STF16].

Design-space exploration can be used to evaluate functional or operational correctness of

different parameter configurations. The former pertains to design specifications that eval-

uate system alternatives with respect to safety and reliability (e.g., deadlock, starvation,

etc.), and refers to the input-output behavior of the system, while the latter pertains to de-

sign specifications in terms of power consumption, performance, cost, etc. Both evaluation

criteria explore a plethora of design choices ranging from choice of components, number of

components, operating modes, choice of algorithms, and inter-component connections.

1.3.1 Taxonomy

The search for optimal design alternatives with respect to design criteria entails two

distinct elements: 1) the evaluation of a single design alternative using defined evaluation

metrics, and 2) the search strategy for covering all parameter configurations in the design

space during the design-space exploration process. Methods for evaluating a single design

in the design space broadly fall into three categories [Tho12]: measurements on a prototype

implementation; simulation-based evaluation; and estimations based on some kind of analyt-

ical model. Each of these methods is characteristically distinct in terms of evaluation time

and accuracy. The evaluation of prototype implementations provides the highest accuracy,

but long development times prohibit evaluation of many design options. Estimations based

on analytical models is fastest with limited accuracy since these models are typically unable

to capture intricate system behavior. Simulation-based evaluation fills the gap between the

other two methods: both highly accurate (but slower) and fast (but less accurate) simulation

techniques are available. This tradeoff between accuracy and speed is very important for

design-space exploration. The ability to evaluate a single design, and the ability to efficiently

search the entire design space is critical for successful design-space exploration.

11

It is important to note that design-space exploration is a multi-objective optimization

problem and is generally considered NP-hard [He10]. It finds design alternatives that are op-

timized in terms of design specifications: performance, cost, safety, etc. The search strategies

to explore the design space can either be open-loop or closed-loop. In open-loop algorithms,

the set of parameter configurations to evaluate is determined at the start of an exploration,

and continues unchanged, regardless of the results obtained for individual designs. There-

fore, open-loop search strategies are exact by their very nature. Exact methods, like those

implemented using integer linear programming [NM, LGHT08] or branch and bound al-

gorithms [PCC11], guarantee that all optimal parameter configurations that meet design

specifications will be found. Closed-loop approaches attempt to find optimal parameter con-

figurations without having to evaluate all possible configurations. These heuristic methods

make a best-effort estimate by evaluating only a finite number of parameter configurations,

however, they do not guarantee that all optimal configurations will be found. Examples

of closed-loop methods are hill climbing, tableau search, simulated annealing, ant colony

optimization, particle swarm optimization, and genetic algorithms. Successful design-space

exploration requires a tradeoff between the methods for exploring parameter configurations

and evaluation of single designs in terms of speed and accuracy. Exact methods are compute

intensive and require clever design-space pruning to handle large design spaces but ensure

exhaustive exploration of all parameter configurations. On the other hand, heuristic methods

are often more scalable for large design spaces but may skip exploration of some parameter

configurations. Regardless of the search strategy and single design evaluation method, the

ultimate goal of design-space exploration is to provide 100% confidence that every design in

the design space, i.e., all possible parameter configurations, is throughly evaluated, either by

exact or heuristic methods, for functional and operational correctness.

12

1.3.2 Formal Methods

Exhaustive enumeration of all parameter configurations in a design space is very im-

portant for safety-critical systems. Heuristic methods are therefore not desirable for such

systems, where 100% confidence is vital for ensuring all parameter configurations of a design

space are explored. Moreover, simulation-based evaluation of single designs in the design

space, although scalable, fails to guarantee high-levels of reliability. Therefore, formal meth-

ods play a major role in enabling design-space exploration of safety-critical systems. The

three ingredients for automatic design-space exploration integrate nicely with the applica-

tion of formal methods: 1) the formal representation of the design-space and specifications

can be readily utilized; 2) formal methods can guarantee exhaustive exploration of all pa-

rameter configurations; and 3) formal method techniques, like model checking and theorem

proving, can evaluate individual designs and check them against specifications. However,

out-of-the-box application of formal methods may not scale to handle large design spaces.

The combinatorial problem space limits the utility of formal verification, e.g., a design space

with P Boolean parameters andN specifications may require 2P×N single design evaluations

to ensure the design space is exhaustively explored.

Significant advances have enabled utilizing formal methods for design-space exploration:

development of expressive formal languages for design representation [CCD+14], improve-

ments to constraint satisfaction tools (e.g., Satisfiability (SAT) or Satisfiability Modulo Theo-

ries (SMT) solvers) [BT18] for design enumeration, and faster symbolic execution techniques

[YFB+19] and faster model-checking algorithms [GR16] for design evaluation. However,

most formal techniques are either application-specific and don’t generalize across design

spaces that arise in different domains, or fail to scale with the size of the design space. There

is an urgent need to develop scalable formal tools and algorithms that generalize over several

problem domains, and enable design-space exploration of safety-critical systems with 100%

13

confidence and safety-assurance. The use of formal methods for design-space exploration

can be broadly categorized into exploration and evaluation.

1.3.2.1 Exploration

Given a formal representation of the design space and associated design constraints, for-

mal methods can be used to prune the design space for potential candidates that may be

individually evaluated. Each component (and their parameters) are associated with con-

straints that must be satisfied by every valid design solution. Moreover, each candidate

design must satisfy global system constraints. Prior work utilizes constraint satisfaction

solvers to find parameter configurations that meet operational constraints. Each design in

the pruned design space is then evaluated using simulation techniques against functional de-

sign specifications. Other methods compile system specifications and component constraints

into a satisfiability problem, which is tackled by a constraint solver to generate a single

design solution that satisfies the specifications and constraints. The advances in constraint

solver technology has significantly driven their use in exploration and design-space pruning.

Another orthogonal technique is that of parameter synthesis [CGMT13] that generates pa-

rameter configurations that meet design specifications. The design representation specifies

the datatype (Boolean, Integer, etc.) and range of parameters (minimum and maximum

values). The synthesis algorithm then computes the values of all parameters for which the

corresponding design meets specifications. Both techniques guarantee the enumeration of all

valid design solutions that may be studied further.

1.3.2.2 Evaluation

Although formal exploration techniques provide high-levels of assurance for design enu-

meration, simulation and semi-formal techniques (like symbolic execution [YFB+19]) are the

major workhorse for design evaluation. However, exhaustive evaluation of all behaviors of

14

Report

Figure 1.3: Model checking of multiple models and properties for design-space exploration
of large design spaces. The model-checking engine outputs the verification result for every
model-property pair.

a design using formal methods is vital for safety-critical systems. Several tools utilize the-

orem proving to check the design representation against specifications [KJS11], but require

manual guidance for proof formulation. The design and specifications can be modeled as a

constraint satisfaction problem at higher levels of abstraction [KJS11]. The constraint solver

then automatically and exhaustively evaluates abstract system behaviors against specifica-

tions. However, such approaches are limited in terms of the types of specifications that can

be checked; they only support specifications expressed in propositional or first-order logic.

Model checking can be used to evaluate designs against specifications. The ability to au-

tomatically check specifications written in more expressive logics (like linear temporal logic

[Pnu77]) make model checking very useful in a design-space exploration framework. More-

over, the counterexamples provided by model checking can help influence design decisions and

catch catastrophic bugs in early stages of design. The ability to explain why certain param-

eter configurations violate a design specification using counterexamples is an added bonus.

Given M models (one for each design in the pruned design space) and N specifications,

design-space evaluation using model checking requires M ×N individual model-specification

runs. We refer to this problem as model checking of multiple models and properties,

or simply model checking of design spaces as shown in Figure 1.3. The model-checking

algorithms inputs multiple parameter-configured models and design properties, and outputs

15

the model-checking result (pass or counterexample) for every model-property pair. However,

due to the inherent complexity of model checking, existing tools and algorithms fail to handle

large design spaces with thousands, or even hundreds of valid parameter configurations. The

work presented in this dissertation advances state-of-the-art in model checking to evaluate

multiple models and properties for design-space exploration of safety-critical systems. We fo-

cus on the closed-loop and exact exploration of the design-space, and utilize model checking

to analyze individual design candidates against specifications for functional correctness.

1.4 Application Domains

The problem of model-checking multiple models and properties is not just limited to

design-space exploration. Several industrial verification tasks entail: (T1) checking a design

model against multiple properties, (T2) checking multiple design models against a single

property, and (T3) checking multiple models against multiple properties. Naive applica-

tion of model checking to accomplish these tasks is inherently complex and prohibits usage

on large designs [GCM+16] with thousands of properties. The algorithms and techniques

presented in this dissertation are applicable to several practical verification tasks including

functional verification (T1), incremental verification (T1, T2), regression verification (T2),

equivalence checking (T1), and product-line verification (T3).

1.4.1 Functional Verification

Functional verification is the process of demonstrating the functional correctness of a

design with respect to design specifications. It is inherently complex because of the sheer

volume of possible test-cases that need to be checked for a design, and takes the majority

of time and effort in most large safety-critical hardware and/or software projects. Formal

verification techniques, like model checking, can attempt to mathematically prove that cer-

16

Figure 1.4: The verification workflow for systems where verification feedback constantly
influences refinement of the design. A new design is re-verified against new or modified
specifications after every refinement.

tain requirements are satisfied by the design, or that certain undesired behaviors (such as

deadlock) cannot occur. Complex functional verification tasks often entail model-checking a

large number of properties on the same design model. Despite the prevalence of such multi-

property verification tasks, much research in model-checking has focused on the verification

of individual properties [CCL+18]. How can we ensure that the verification effort expended

to check a single property can be reused when checking thousands of properties on the same

design? The work presented in this dissertation boosts the scalability of multi-property

model checking of large and complex designs.

1.4.2 Incremental Verification

Modern approaches for the development of a hardware or software system require re-

peated design refinement based on verification feedback as shown in Figure 1.4. Despite the

increasing effectiveness of model-checking tools, automatically re-verifying a design when-

ever a new revision is created is often not feasible using existing tools. When small changes

are introduced into the design or the specification, for example due to a bug fix or an up-

grade, the whole design needs to be re-verified, generally requiring the same amount of

resources as for the initial verification [CIM+11]. Incremental verification aims at facilitat-

17

Figure 1.5: Equivalence checking by merging inputs and proving equivalence over outputs
for two designs; proving internal equivalences boosts the scalability of equivalence checking.
Each equivalence is a property to be model-checked against the composite model.

ing re-verification by reusing partial results from previous verification runs. The problem

is especially acute when similar specifications are checked one-by-one on the same design

(Section 1.4.1). Closed-loop design-space verification may entail verifying design models

with very minor differences or related specifications; incremental verification greatly benefits

verification by reusing previous results. The best option for scalable incremental verification

is to reuse results from previous model-checking runs, and only verify the change. However,

what prior results to reuse, and how to reuse remains an open question. We present new

algorithms that enable efficient incremental verification in this dissertation.

1.4.3 Equivalence Checking

Equivalence checking is a process in electronic design automation (EDA) to formally

prove that two representations of a design exhibit exactly the same behavior. The two de-

sign representations can have different implementations, but must be equivalent in terms

of input/output behavior. Equivalence checking is used to prove design equivalence across

different levels of abstraction (Verilog vs. And-Inverter graphs, C-language vs. assembly in-

structions, etc.), or between different versions of the same design. The equivalence checking

algorithm merges the inputs of the two designs, and uses model checking to prove output

18

equivalences as shown in Figure 1.5. Equivalence checking also benefits from proving internal

equivalences between the two designs, i.e., pairwise equivalence between intermediate points

in the model. The output equivalences and internal equivalences form properties that are

verified using model checking against the composite model with merged inputs. The two

designs are equivalent when all output equivalences hold for the composite model. Equiva-

lence checking is the most popular formal verification technique for hardware [Str09]. The

problem is considered “easier” than functional verification as it circumvents the problem of

specifying requirements, but requires the same or more verification effort; failure to prove

even a single output equivalence within resource limits stalls equivalence checking. A related

technique is that of redundancy removal [CBMK11] wherein redundancies added at design-

time for boosting performance, error resilience, and debugging are identified and removed

prior to functional verification; it is well known that redundancy removal can often make an

intractable verification problem tractable [MBPK05] due to reduction in design size. Internal

equivalences are identified to form properties that are evaluated using model checking. Both

equivalence checking and redundancy removal mandate scalable verification of multiple prop-

erties. The work presented in this dissertation heavily impacts multi-property verification,

and enables equivalence checking and redundancy removal of very large designs.

1.4.4 Product-line Verification

Product-line technology is increasingly used in mission-critical and safety-critical appli-

cations. A software product line is a family of software systems that differ in terms of

features, i.e., a design space. Software product line verification entails evaluating every pos-

sible feature combinations with respect to design specifications. The product line is modeled

formally with each feature represented by Boolean combination of parameters to the sys-

tem. An example of a software product line is shown in Figure 1.6. The product line may

comprise of a multitude of products; every unique feature parameter configuration is a prod-

19

Figure 1.6: The formal representation of a software product line for a vending machine
[CCH+12]. The individual features are represented by Boolean combinations of parameters
to the system.

uct. Model-checking can be applied to analyze and verify software product lines [CCH+12]

by reducing the problem to model checking of multiple models and properties. The formal

model for each product (generated by parameter instantiation) can be checked against de-

sign specifications. Moreover, model-checking technology can be used to analyze selected

products after pruning the product line using specialized techniques [DR18, AvW+13]. The

techniques presented in this dissertation scale out-of-the-box application of model checking

to product-line verification.

1.5 Contributions

We make several contributions that enable efficient design-space exploration using model

checking. We focus on the more general problem of model checking multiple models and

properties, and optimize design-space model checking, and other related application domains

by making significant contributions across every step of the model-checking process.

20

1.5.1 Design-Space Reduction

Model checking a design space entails checking multiple models and properties. Given

a formal representation of the design space and properties expressing system specifications,

we present algorithms that automatically prune the design space by finding inter-model

relationships and property dependencies [DR18]. Our design-space reduction technique is

compatible with off-the-shelf model checkers, and only requires checking a small subset of

models and properties to provide verification results for every model-property pair in the

original design space. We make the following contributions (Chapter 2):

1. A fully automated, general, and scalable algorithm for checking design spaces; it can

be applied to LTL model checking problems without major modifications to the system

designers’ verification workflow.

2. Modification to the general model-checking procedure of sequentially checking prop-

erties against a model to a dynamic procedure; the next property to check is chosen

to maximize the number of yet-to-be-checked properties for which the result can be

determined from inter-property dependencies.

3. Formal definition of two new formula-ordering heuristics with a comparative analysis

of their individual and combined impact on performance.

1.5.2 Incremental Verification

We observe that sequential enumeration of the design space generates models with small

incremental differences. Typical model-checking algorithms do not take advantage of this

information; they end up re-verifying “already-explored” state spaces across models. We

present algorithms that learn and reuse information from solving related models against a

21

property in sequential model-checking runs [DR17, DR20b]. We make the following contri-

butions (Chapter 3):

1. Fully automated, general, and scalable incremental model-checking algorithm for check-

ing design spaces that reuses model-checking information across runs.

2. Systematic methodology to reuse reachable state approximations to guide bad-state

search in IC3. Our novel procedure to repair state approximations requires little

computation effort and is of individual interest.

3. Overview of locality-sensitive hashing [AI08] techniques to mine model specifications

expressed as And-Inverter-Graph circuits.

4. Heuristics to organize the design space, i.e., partially order models in a set and group

properties based on similarity, to enable higher reuse of reachable state approximations

by FuseIC3 and improve overall performance.

1.5.3 Multi-Property Verification

Design space model-checking tasks often mandate checking several properties. State-

of-the-art tools do not optimally exploit subproblem sharing between properties, leaving

an opportunity to save verification resource via concurrent verification of “nearly-identical”

properties. The verification effort expended for one property in a group can be directly reused

to accelerate the verification of the others. We present a near-linear runtime algorithm for

partitioning properties into provably high-affinity groups for individual model-checking tasks

[DBI+19]. We make the following contributions (Chapter 4):

1. An online algorithm to partition properties based on structural information, readily

available in low-level design representations, into provably high-affinity groups.

22

2. Efficient procedure to compute cones of influence of multiple properties, and data

structures that allow CPU-speed comparison between properties.

3. A systematic methodology to learn semantic information, and refine high-structural-

affinity groups in a localization abstraction framework.

4. An optimized multi-property localization abstraction solution that is resistant to per-

formance slowdown that may occur when verifying very-large property groups.

1.5.4 Parallel Orchestration

We optimize parallel verification to maximize the benefits of our proposed techniques.

Model checking tools utilize parallelism, either in portfolio mode where different algorithm

strategies run concurrently, or in partitioning mode where disjoint property subsets are ver-

ified independently. However, both approaches often degrade into highly-redundant work

across processes, or under-utilize available processes. We propose methods to minimize re-

dundant computation, and dynamically optimize work distribution when checking multiple

properties for individual models [DBK+20]. We make the following contributions (Chap-

ter 5):

1. We present a scalable property partitioning algorithm, extending [DBI+19] to guarantee

complete utilization of available processes with provable partition quality.

2. We propose parallel scheduling improvements, such as resource-constrained irredun-

dant group iteration, incremental repetition, and group decomposition to dynamically

cope with more-difficult groups or slower workers.

3. We address irredundant strategy exploration of a localization portfolio in a sequential

redundancy removal framework, which we have found to be the most-scalable strategy

to prove non-inductive redundancies.

23

4. We propose improvements to semantic group partitioning within localization. To our

knowledge, this is the first published approach to mutually-optimize property partition-

ing and strategy exploration within a multi-property localization abstraction portfolio.

24

CHAPTER 2. DESIGN-SPACE REDUCTION

Modern system design often requires comparing several design alternatives over a large

design space. The combinatorial size of the design space hinders out-of-the-box application

of formal verification. Each design in the design space is modeled formally, and evaluated

against a set of design specifications. The different models arise out of a need to weigh differ-

ent design choices, to check core capabilities of versions with varying features, or to analyze

a future version against previous ones. Model checking can compare the different models

for functional correctness, however, applying model checking off-the-shelf may not scale due

to the large size of the design space for today’s complex systems because of several reasons.

First, building and validating models for individual designs in the design space is tedious,

and becomes intractable when the number of designs is large. Moreover, maintaining and

updating models is extremely error-prone: a design update may require modifying several

models. Second, the number of models to be verified individually using model checking can

be very large. The number of models may be reduced by restricting certain combinations of

parameter configurations or by identifying redundant designs, i.e., two models that exhibit

same behavior under different parameter configurations, however, such restrictions and re-

ductions either require very deep domain knowledge or expensive preprocessing to analyze

design behaviors (e.g. using simulation). Third, the number of properties to check against

individual models may be too large, or extremely hard for a model checker to verify in a

reasonable amount of time. In this chapter, we present algorithms and techniques to scale

the applicability of model checking for design-space exploration by answering the follow-

ing questions: 1) How to represent the design space and associated parameters, and design

specifications formally that allows easier maintainability, design updates, and is amenable

25

to model checking? 2) How to identify redundant design-alternatives in the design space to

reduce the number of models to check? 3) How to minimize the model-checking effort for

evaluating a single model against several design specifications?

The rest of the chapter is organized as follows: Section 2.1 gives a high-level overview

of our contributions to efficiently model and model-check design-spaces, and contrasts with

related work. Section 2.2 gives background information and introduces modeling formalisms

for design spaces with parameters. Section 2.3 presents our algorithm to minimize the

number of design-alternatives to check for a design space, and also minimize the number of

properties to evaluate for each model, albeit providing the complete model-checking verdict

for every individual model-property pair in the design space. We experimentally evaluate

our modeling technique and algorithms on large-scale design spaces for NASA’s NextGen air

traffic control system, Boeing’s AIR6110 wheel braking system in Section 2.4. Section 2.5

concludes the chapter by highlighting future optimizations and applicability of our algorithms

and modeling techniques to other verification scenarios.

2.1 Introduction

In the early phases of design, there are frequently many different models of the system

under development [BLBM07, GCM+16, MCG+15] constituting a design space. We may

need to evaluate different design choices, to check core capabilities of system versions with

varying feature-levels, or to analyze a future version against previous ones in the product

line. The models may differ in their assumptions, implementations, and configurations. We

can use model checking to aid system development via a thorough comparison of the set

of system models against a set of properties representing requirements. Model checking, in

combination with related techniques like fault-tree analysis, can provide an effective compar-

ative analysis [MCG+15, GCM+16]. The classical approach checks each model one-by-one,

26

as a set of independent model-checking runs. For large and complex design spaces, perfor-

mance can be inefficient or even fail to scale to handle the combinatorial size of the design

space. Nevertheless, the classical approach remains the most widely used method in industry

[BCFP+15, GCM+16, JMN+14, MCG+15, MNR+13]. Algorithms for family-based model

checking [CHSL11, CCH+12] mitigate this problem but their efficiency and applicability still

depends on the use of custom model checkers to deal with model families.

We assume that each model in the design space can be parameterized over a finite set of

parametric inputs that enable/disable individual assumptions, implementations, or behav-

iors. It might be the case that for any pair of models the assumptions are dependent, their

implementations contradict each other, or they have the same behavior. Since the different

models of the same system are related, it is possible to exploit the known relationships be-

tween them, if they exist, to optimize the model checking search. These relationships can

exist in two ways: relationships between the models, and relationships between the properties

checked for each model.

We present an algorithm that automatically prunes and dynamically orders the model-

checking search space by exploiting inter-model relationships. The algorithm, Discover

Design-Space Dependencies (D3), reduces both the number of models to check, and the

number of LTL properties that need to be checked for each model. Rather than using a

custom model checker, D3 works with any off-the-shelf checker. This allows practitioners

to use state-of-the-art, optimized model-checking algorithms, and to choose their preferred

model checker, which enables adoption of our method by practitioners who already use model

checking with minimum change in their verification workflow. We reason about a set of sys-

tem models, corresponding to a design space, by introducing the notion of a Combinatorial

Transition System (CTS). Each individual model, or instance, can be derived from the CTS

by configuring it with a set of parameters. Each transition in the CTS is enabled/disabled

by the parameters. We model check each instance of the CTS against sets of properties.

27

Report

Figure 2.1: Typical verification workflow for design-space reduction using the D3 algorithm
thats minimize the number of parameter configured models and the number of properties
checked per model, but provides results for every model-property pair.

We assume the properties are in Linear Temporal Logic (LTL) and are independent of the

choice of parameters, though not all properties may apply to all instances. D3 preprocesses

the CTS to find relationships between parameters and minimizes the number of instances

that need to be checked to produce results for the whole set. It uses LTL satisfiability check-

ing [RV07] to determine the dependencies between pairs of LTL properties, then reduces

the number of properties that are checked for each instance. D3 returns results for every

model-property pair in the design space, aiming to compose these results from a reduced

series of model-checking runs compared to the classical approach of checking every model-

property pair. Figure 2.1 shows the workflow for model checking design spaces using the

D3 algorithm. We demonstrate the industrial scalability of D3 using a set of 1,620 real-life,

publicly-available SMV-language benchmark models with LTL specifications; these model

NASA’s NextGen air traffic control system [CCD+14, GCM+16, MCG+15]. We also eval-

uate the property-dependence analysis separately on real-life models of Boeing AIR 6110

Wheel Braking System [BCFP+15] to evaluate D3 in multi-property verification workflows.

28

2.1.1 Related Work

One striking contrast between D3 and related work is that D3 is a preprocessing al-

gorithm, does not require custom modeling, and works with any off-the-shelf LTL model

checker. Parameter synthesis [CGMT13] can generate the many models in a design space

that can be analyzed by D3; however existing parameter synthesis techniques require custom

modeling of a system. We take the easier path of reasoning over an already-restricted set

of models of interest to system designers. D3 efficiently compares any set of models rather

than finding all models that meet the requirements. Several parameter synthesis approaches

designed for parametric Markov models [DJJ+15, DJJ+16, HHZ11, QDJ+16] use PRISM

and compute the region of parameters for which the model satisfies a given probabilistic

property (PCTL or PLTL); D3 is an LTL-based algorithm. Parameter synthesis of a para-

metric Markov model with non-probabilistic transitions can generate the many models that

D3 can analyze. In multi-objective model checking [BDK+14, EKVY07, FKN+11, KNPQ13],

given a Markov decision process and a set of LTL properties, the algorithms find a controller

strategy such that the Markov process satisfies all properties with some set probability. Dif-

ferently from multi-objective model checking, which generates “trade-off” Pareto curves, D3

gives a boolean result. After making early-stage-design choices using D3, multi-objective

model checking can verify selected configurations. The parameterized model checking prob-

lem (PCMP) [EK00] deals with infinite families of homogeneous processes in a system; in

our case, the models are finite and heterogeneous. Specialized model-set checking algorithms

[DR17] can check the reduced set of D3 processed models.

In multi-property model checking, multiple properties are checked on the same system.

Existing approaches simplify the task by algorithm modifications [CCG+09, CGM+10], SAT-

solver modifications [KNPH06, KN12], and property grouping [CN11a, CCL+17]. The inter-

29

property dependence analysis of D3 can be used in multi-property checking. We compare

D3 against the affinity[CN11a] based approach to property grouping.

Product line verification techniques, e.g., with Software Product Lines (SPL), also verify

parametric models describing large design spaces. We borrow the notion of an instance, from

SPL literature [RS10, SS09]. An extension to NuSMV in [CHSL11] performs symbolic model

checking of feature-oriented CTL. The symbolic analysis is extended to the explicit case and

support for feature-oriented LTL in [CCH+12, CCS+13a]. The work most closely related to

ours is [DASBW15] where product line verification is done without a family-based model

checker. D3 outputs model-checking results for every model-property pair in the design

space (e.g. all parameter configurations) without dependence on any feature whereas in SPL

verification using an off-the-shelf checker, if a property fails then it isn’t possible to know

which models do satisfy the property [CHS+10, DASBW15].

2.1.2 Contributions

The preprocessing algorithm presented is an important stepping stone to smarter algo-

rithms for checking large design spaces. Our contributions are summarized as follows:

1. A fully automated, general, and scalable algorithm for checking design spaces; it can

be applied to LTL model checking problems without major modifications to the system

designers’ verification workflow.

2. Modification to the general model-checking procedure of sequentially checking prop-

erties against a model to a dynamic procedure; the next property to check is chosen

to maximize the number of yet-to-be-checked properties for which the result can be

determined from inter-property dependencies.

3. Comparison of our novel inter-property dependence analysis to existing work in multi-

property verification workflows [CN11a].

30

4. Extensive experimental analysis using real-life benchmarks; all reproducibility artifacts

and source code are publicly available.1

5. Formal definition of two new formula-ordering heuristics with a comparative analysis

of their individual and combined impact on performance.

2.2 Preliminaries

2.2.1 Temporal Logic Model Checking

Definition 2.2.1. A labeled transition system (LTS) is a system model of the form M =

(Σ, S, s0, L, δ) where,

1. Σ is a finite alphabet, or set of atomic propositions,

2. S is a finite set of states,

3. s0 ∈ S is an initial state,

4. L : S → 2Σ is a labeling function that maps each state to the set of atomic propositions

that hold in it, and

5. δ : S → S is the transition function.

A computation trace, or run of LTS M is a sequence of states π = s0→s1→ . . .→sn over

the word w = L(s0), L(s1), . . . , L(sn) such that si ∈ S for 0 ≤ i ≤ n, and (si, si+1) ∈ δ for

0 ≤ i < n.

Linear temporal logic (LTL) reasons over linear computation traces. LTL formulas are

composed of a finite set Σ of atomic propositions, the Boolean connectives ¬,∧,∨, and →,

and the temporal connectives U (until), R (release), X (also called © for “next time”),
1Raw experimental results available at http://temporallogic.org/research/TACAS18/

http://temporallogic.org/research/TACAS18/

31

� (also called G for “globally”) and ♦ (also called F for “in the future”). We define LTL

formulas inductively.

Definition 2.2.2. For every p ∈ Σ, atomic proposition p is an LTL formula. If ϕ and ψ are

LTL formulas, then so are:

• ¬ϕ

• ϕ ∧ ψ

• ϕ ∨ ψ

• ϕ→ ψ

• ϕ U ψ

• ϕ R ψ

• Xϕ

• �ϕ

• ♦ϕ

Definition 2.2.3. We interpret LTL formulas over computations of the form π : ω → 2Σ,

where ω is used in the standard way to denote the set of non-negative integers. We define

π, i |= ϕ (computation π at time instant i ∈ ω satisfies LTL formula ϕ) as follows:

• π, i |= p for p ∈ Σ iff p ∈ π(i).

• π, i |= ¬ϕ iff π, i 6|= ϕ.

• π, i |= ϕ ∧ ψ iff π, i |= ϕ and π, i |= ψ.

• π, i |= ϕ ∨ ψ iff π, i |= ϕ or π, i |= ψ.

• π, i |= Xϕ iff π, i = 1 |= ϕ.

• π, i |= ϕUψ iff ∃j ≥ i, such that π, j |= ψ and ∀k, i ≤ k < j, we have π, k |= ϕ.

• π, i |= ϕRψ iff ∀j ≥ i, iff π, j 6|= ψ, then ∃k, i ≤ k < j, such that π, k |= ϕ.

• π, i |= �ϕ iff ∀j ≥ i, we have π, j |= ϕ.

• π, i |= ♦ϕ iff ∃j ≥ i, such that π, j |= ϕ.

32

We take |= (ϕ) to be the set of computations that satisfy ϕ at time 0, i.e., {π : π, 0 |= ϕ}.

We define the prefix of an infinite computation π to be the finite sequence starting from the

zeroth time step, π0, π1, . . . , πi for some i ≥ 0. Let Π denote the set of all computations of

an LTS M starting from the zeroth time step. Given an LTL property ϕ and a LTS M , M

models or satisfies ϕ, denoted M |= ϕ, iff ∀π ∈ Π, we have π, 0 |= ϕ, i.e., ϕ holds in all

possible computation paths of M .

2.2.2 Design-Space Model Checking

Definition 2.2.4. A parameter Pi is a variable with the following properties.

1. The domain of Pi, denoted JPiK, is a finite set of possible assignments to Pi.

2. Parameter Pi is set by assigning a single value from JPiK, i.e. Pi = dPi
∈ JPiK. A

non-assigned parameter is considered unset.

3. Parameter setting is static, i.e., it does not change during a run of the system.

Let P be a finite set of parameters. |P | denotes the number of parameters. For each Pi ∈ P ,

|Pi| denotes the size of the domain of Pi. Let Form(P) denote the set of all Boolean formulas

over P generated using the BNF grammar ϕ ::= > | Pi == D and D ::= Pi1 | Pi2 | . . . | Pin ;

for each Pi ∈ P , n = |Pi|, and JPiK={Pi1 , Pi2 , . . . , Pin}. Therefore, Form(P) contains > and

equality constraints over parameters in P .

Definition 2.2.5. A combinatorial transition system (CTS) is a combinatorial system model

MP = (Σ, S, s0, L, δ, P, LP), such that (Σ, S, s0, L, δ) is a LTS and

1. P is a finite set of parameters to the system, and

2. LP : δ → Form(P) is function labeling transitions with a guard condition.

33

P1

>

P1

¬P3
>

>

>
>

>

>

P2s0 s1

s2

s3

s4

s6

s5

Figure 2.2: A combinatorial transition system MP = (Σ, S, s0, L, δ, P, LP) with Boolean
parameters P = {P1, P2, P3} that enable (or disable) state transitions in δ

We limit the guard condition over a transition to > or an equality constraint over a single

parameter for simpler expressiveness and formalization. However, there can be multiple

transitions between any two states with different guards. A transition is enabled if its guard

condition evaluates to true, otherwise, it is disabled. A label of > implies the transition is

always enabled. A possible run of a CTS is a sequence of states πP = s0
ν1→s1

ν2→ . . .
νn→sn over

the word w = L(s0), L(s1), . . . , L(sn) such that si ∈ S for 0 ≤ i ≤ n, νi ∈ Form(P) for

0 < i ≤ n, and (si, si+1) ∈ δ and (si, si+1, νi+1) ∈ LP for 0 ≤ i < n, i.e., there is transition

from si to si+1 with guard condition νi+1. A prefix α of a possible run πP = α
νi→ . . .

νn→sn is

also a possible run.

Example 2.2.1. A Boolean parameter has domain {true, false}. Figure 2.2 shows a CTS

with Boolean parameters P = {P1, P2, P3}. For brevity, guard condition Pi==true is written

as Pi, while Pi==false is written as ¬Pi. A transition with label P1 is enabled if P1 is set

to true. Similarly, a label of ¬P3 implies the transition is enabled if P3 is set to false.

Definition 2.2.6. A parameter configuration c for a set of parameters P is a k-tuple (dP1 ,

dP2 , . . . , dPk
), for k = |P |, that sets each parameter in P , i.e., for every 1 ≤ i ≤ k, Pi = dPi

and dPi
∈ JPiK is a setting. The set of all possible configurations C over P is equal to

P1 × P2 × . . .× Pk where × denotes the cross product. The setting for Pi in configuration c

is denoted by c(Pi).

34

A configured run of a CTS MP over a configuration c, or c-run, is a sequence of states

πP (c) = s0
ν1−→ s1

ν2−→ . . .
νn−→ sn such that πP (c) is a possible run, and c ` νi for 0 < i ≤ n,

where ` denotes propositional logic satisfaction of the guard condition νi under parameter

configuration c. Given a CTS MP and a parameter configuration c, a state t is reachable iff

there exists a c-run such that sn = t, denoted s0
∗−→
c
t, i.e., t can be reached in zero or more

transitions. A transition with guard ν is reachable iff (sj, sj+1, ν) ∈ LP , (sj, sj+1) ∈ δ, and

s0
∗−→
c
sj.

Definition 2.2.7. An instance of a CTS MP = (Σ, S, s0, L, δ, P, LP) for parameter configu-

ration c is a LTS MP (c) = (Σ, S, s0, L, δ
′) where δ′ = {t ∈ δ | c ` LP (t)}.

Given a LTL property ϕ and a CTS MP = (Σ, S, s0, L, δ, P, LP), the model checking problem

for MP is to find all parameter configurations c ∈ C over P such that ϕ holds in all c-runs

of MP , or all computation paths of LTS MP (c).

Definition 2.2.8. Given a CTS MP with parameters Pi, Pj, and a parameter configuration

c, Pj is dependent on Pi, denoted Pj c Pi, iff

• In all possible runs with a transition guard over Pj, a transition with guard over Pi

appears before a transition with guard over Pj, and

• In all configured runs, the setting for Pi in c makes transitions with guard conditions

over Pj unreachable.

Example 2.2.2. In Figure 2.2, if P1 is set to false, execution never reaches the transition

labeled ¬P3. Therefore, if configuration c = (false, true, true) then P3 c P1.

Definition 2.2.9. A universal model U is a LTS that generates all possible computations

paths over its atomic propositions.

35

Model 1 Model 2 CTS Model

Figure 2.3: Model 1 and Model 2 written in the SMV language can be combined to form
a CTS model with the use of PARAMETER_CONF preprocessor directive.

2.2.3 Temporal Logic Satisfiability

Theorem 2.2.1 (LTL Satisfiability). [RV07] Given a LTL property ϕ and a universal model

U , ϕ is satisfiable if and only if U 6|= ¬ϕ.

This theorem reduces LTL satisfiability checking to LTL model checking. Therefore, ϕ is

satisfiable when the model checker finds a counterexample.2

2.2.4 Modeling a Design Space

Efficient modeling of a design space using a combinatorial transition system requires lan-

guage constructs to deal with parameters. Since our goal is to use an existing model checker,

language extensions are outside the scope of this work. An alternative way to add parameters

to any system description is by utilizing the C preprocessor (cpp). Given a set of parameters

P , and a combinatorial model MP , each run of the preprocessor with a configuration c ∈ C

generates an instance MP (c). Figure 2.3 demonstrates generating a CTS from two related
2This is why we do not consider CTL; CTL satisfiability is EXPTIME-complete and cannot be accomplished

via linear time CTL model checking.

36

SMV models. Model 1 and Model 2 differ in the initial configuration of the parameter. The

corresponding CTS replaces the parameter initiation with the PARAMETER_CONF preprocessor

directive. The cpp is run on the CTS model with #define PARAMETER_CONF 0, and #define

PARAMETER_CONF 1 to generate the two models.

2.3 Discovering Design-Space Dependencies

In this section we describe the D3 algorithm. Our approach speeds up model checking

of combinatorial transitions systems by preprocessing of the input instances; it therefore in-

creases efficiency of both BDD-based and SAT-based model checkers. The problem reduction

is along two dimensions: number of instances, and number of properties.

2.3.1 Individual Model Redundancies

Given a set of parameters P , a combinatorial transition system MP , and a property ϕ,

MP is model checked by sending, for all parameter configuration c ∈ C, instance MP (c) to

the LTS model checker, along with the property ϕ. The output is aggregated for |C| runs of

the model checker, and all parameter configurations c, such that MP (c) |= ϕ are returned. In

principle, parameters can be encoded as state variables, and the parametric model can be

posed as one big model-checking obligation, however there are caveats.

1. State space explosion before any useful results are obtained.

2. The counterexample generated from one run of the model checker gives a single unde-

sirable configuration.

Our goal is to make the classical approach of individual-model checking more scalable as the

design space grows by intelligently integrating possible dependencies between parameter con-

figurations. A combinatorial transition system is a directed unweighted graph with Boolean

37

constraints on its edges. The states and transitions in the CTS represent the vertices and

edges of the graph, respectively. A possible run of a CTS is a path through the graph. The

number of instances that need to be checked can be reduced by exploiting the order in which

guarded transitions appear along a possible run.

Lemma 2.3.1. Given a CTS MP = (Σ, S, s0, L, δ, P, LP) with parameters A,B ∈ P , if

B c A for some parameter configuration c, then there does not exist any possible run of

MP with prefix α = s0
∗→si

νB−→sj
∗→sk

νA→sl, where νA and νB are guards over parameters A

and B, resp., and si, sj, sk, sl ∈ S, i.e., a transition with guard over parameter B does not

appear before a transition with guard over parameter A.

Proof. Follows from Definition 2.2.8. Let ΠP be the set of all possible runs of CTS MP .

Let πp ∈ ΠP be a possible run with prefix s0
∗→si

νB−→sj
∗→ sk

νA−→sl. In configured run πP (c),

transition with guard over B is reachable irrespective of the setting for A, violating our

premise of B c A. Therefore, when B c A, a transition with guard over B never appears

before a transition with guard over A in all possible runs.

As a corollary to Lemma 2.3.1, there also do not exist possible runs with transition guards

only over B (and no other Pi ∈ P). Therefore, given a CTS MP with states si, sj, sk, sl ∈ S

and parameters A,B ∈ P , if B c A for some parameter configuration c, then all possible

runs of MP have one of the following prefixes:

1. s0
∗→si

νA−→sj
∗→sk

νB−→sl (guard over A before guard over B)

2. s0
∗→si

νA−→sj
∗→sk

νA−→sl (guards only over A)

3. s0
∗→si

∗−→sj
∗→sk

∗−→sl (guards neither over A nor B)

Similarly, if A c B for some parameter configuration c, then all possible runs of MP

have one of the following prefixes:

38

1. s0
∗→si

νB−→sj
∗→sk

νA−→sl (guard over B before guard over A)

2. s0
∗→si

νB−→sj
∗→sk

νB−→sl (guards only over B)

3. s0
∗→si

∗−→sj
∗→sk

∗−→sl (guards neither over A nor B)

Therefore, when A and B are not dependent, there is no possible run with transition

guards over both A and B. Note that for a CTS MP with A,B ∈ P , if A and B are

dependent, then either A c B or B c A but not both for any configuration c. We only

show formalization for B c A; A c B follows directly.

Theorem 2.3.2 (Redundant Instance). Given a CTS MP = (Σ, S, s0, L, δ, P, LP) with pa-

rameters A,B ∈ P such that B c A for some configuration c, and a LTL property ϕ, there

exist configurations c1, c2, . . . ck ∈ C for k = |B| such that

• ci(A) = c(A) for 0 < i ≤ k, and

• ci(B) = dBi
∈ JBK for 0 < i ≤ k and JBK = {dB1 , dB2 , . . . , dBk

}

For such configurations MP (c1) |= ϕ ≡MP (c2) |= ϕ ≡ . . . ≡MP (ck) |= ϕ.

Proof. From Lemma 2.3.1 we know that if B c A, then a transition with guard over

B never appears before a transition with guard over A in all possible runs of MP . Also,

from Definition 2.2.8 we know that if B c A then there exists a parameter setting for

A that makes transitions with guard over B unreachable in configured runs of MP . Let

this setting be c(A) = dA for dA ∈ JAK. For parameter configurations c1, c2, . . . ck ∈ C

such that ci(A) = c(A) for 0 < i ≤ k, execution never reaches the transition with guard

over B in all c-runs πP (ci) (if it did, B 6 c A). Irrespective of the setting to B, the same

set of states are reachable, and c-runs πP (ci), for 0 < i ≤ k, are identical. Therefore,

MP (c1) |= ϕ ≡MP (c2) |= ϕ ≡ . . . ≡MP (ck) |= ϕ.

39

function FindUP (MP , ĉ)

Input: MP = CTS (Σ, S, so, L, δ, P, LP), ĉ = partial configuration

Output: Pu = unset parameter queue

1: if all parameters are set in ĉ : return ∅ # do not proceed

2: Pu = empty # initially Pu is empty.

3: traverse MP using depth-first traversal

4: if t ∈ δ̂ is reachable and LP (t) is undefined :

LP (t) is undefined when its parameter is NOT set in partial configuration ĉ.

5: enqueue (p : LP (t) is guard over p) in Pu

6: return Pu

Figure 2.4: FindUP algorithm to find unset parameters in a partially configured CTS.

Theorem 2.3.2 allows us to reduce the number of model checker runs by exploiting redun-

dancy between instances. The question that needs to be answered is how to find dependent

parameters? One way would be to use domain knowledge to decide which parameter con-

figurations effect one another; we instead calculate this automatically. A partial parameter

configuration, ĉ, is a parameter configuration in which not all parameters have been set.

Given a CTS MP = (Σ, S, s0, L, δ, P, LP), for a transition t ∈ δ, such that LP (t) = ν, the

guard ν is

• defined, if its corresponding parameter is set in ĉ, and

• undefined, otherwise.

A defined guard evaluates to true when ĉ ` LP (t), or false when ĉ 6` LP (t). Algorithm

FindUP (Find Unset Parameters) in Figure 2.4 solves the dual problem of finding inde-

pendent parameters. It takes as input a CTS MP and a partial parameter configuration ĉ,

40

and returns unset parameters for which guard conditions are undefined and their correspond-

ing transitions are reachable. It traverses (depth-first) the CTS starting from a node for the

initial state s0. During traversal, an edge (transition) t = (si, sj) connects two nodes (states)

si, sj ∈ S if t ∈ δ and ĉ ` LP (t). The edge is disconnected if t 6∈ δ or ĉ 6` LP (t). Since MP is

defined relationally in the annotated SMV language with preprocessor directives (§ 2.2.4),

in the worst case, FindUP takes polynomial time in the number of symbolic states and

transitions. From an implementation point of view, FindUP invokes the cpp for parameter

settings in ĉ on the input model, and parses the output for unset parameters.

Lemma 2.3.3. FindUP returns unset parameters Pi ∈ P for all reachable transitions t ∈ δ

such that guard LP (t) is a guard over Pi, and is undefined.

Proof. Depth-first traversal (DFT) of the CTS visits nodes (states) in the order they appear

in possible runs of MP , while branching and backtracking for nodes that have more than

one adjacent node. Consider a possible run πP = s0
ν1→s1

ν2→s2 . . .
νn→sn such that ĉ ` ν1 and ν2

is undefined. From Definition 2.2.6, transition t = (s1, s2) is reachable, while all transitions

after s2 are not reachable. Hence, the unset parameter for guard ν2 is added to the return set

of FindUP. Depth-first traversal (DFT) allows scanning all possible runs of a CTS without

enumerating all of them. The traversal backtracks whenever a transition with an undefined

guard is visited. Therefore unset parameters for all edges t ∈ δ that can be reached starting

from an initial node in DFT, and for which LP (t) is undefined, are returned by FindUP.

Algorithm GenPC (Generate Parameter Configurations) in Figure 2.5 uses FindUP as

a subroutine to recursively find parameter configurations that need to be checked. It takes

as input a CTS MP , queue of unset parameters Pu, and a partial parameter configuration

ĉ. Initially, ĉ contains no set parameters and Pu =FindUP(MP , ĉ). Upon termination of

GenPC, Ĉ contains the set of partial parameter configurations that need to be checked. On

every iteration, GenPC picks a parameter p from Pu, assigns it a value from its domain

41

1: configuration set Ĉ # initially empty

function GenPC (MP , Pu, ĉ)

Input: MP = CTS (Σ, S, so, L, δ, P, LP), Pu = unset parameter queue

ĉ = partial config # initially empty

2: while Pu not empty :

3: p = dequeue element from Pu

4: for each pd in JpK : # iterate on possible assignments to p

5: set parameter p to pd in ĉ # make an assignment to parameter p

6: Pu = FindUP(MP , ĉ) # get unset parameters

7: if Pu is empty : # all parameters set

8: add ĉ to Ĉ and return

9: else: # set unset parameters

10: GenPC(MP , Pu, ĉ) # call function recursively to assign unset parameters

Figure 2.5: GenPC algorithm to generate parameter configurations to be checked.

JpK in ĉ, and uses FindUP to find unset parameters in CTS MP . If the returned unset

parameter queue is empty, ĉ added to Ĉ. Otherwise, GenPC is called again with the new

unset parameter queue.

Theorem 2.3.4 (GenPC is sound). Given a CTS MP with parameters A,B ∈ P , if there

exists a partial configuration ĉ ∈ Ĉ with ĉ(A) = dAn ∈ JAK and B unset, then there exist

configurations c1, c2, . . . ck ∈ C for k = |B| such that

• ci(A) = ĉ(A) for 0 < i ≤ k, and

• ci(B) = dBi
∈ JBK for 0 < i ≤ k and JBK = {dB1 , dB2 , . . . , dBk

}

for which B ci
A.

42

Proof. We prove the contrapositive of the statement. When parameters A and B are not

dependent, there is no possible run of MP that contains transitions with guards over both

A and B (follows from Lemma 2.3.1). Therefore, every possible run of MP is of the form

πP = s0
ν1→s1

ν2→ . . .
νn→sn where all νi, for 0 < i ≤ n, are either true or guards over P \ {A,B},

or guards over either parameter A or B. A call to FindUP with a setting for A, returns

unset parameter B (follows from Lemma 2.3.3) that is then set to every value in JBK domain

in GenPC. Therefore, if A is set to dAn ∈ JAK in the call to FindUP, then Ĉ contains

k = |B| partial configurations ĉi such that

• ĉi = dAn for 0 < i ≤ k

• ĉi(B) = dBi
∈ JBK for 0 < i ≤ k and JBK = {dB1 , dB2 , . . . , dBk

}

Therefore, when A and B are not dependent, for every setting of A, Ĉ contains |B| partial

parameter configurations; one for every different setting of B.

Theorem 2.3.5 (GenPC is complete). Given a CTS MP with parameters A,B ∈ P , if

there exist configurations c1, c2, . . . ck ∈ C for k = |B| such that

• ci(A) = dAn for 0 < i ≤ k and dAn ∈ JAK, and

• ci(B) = dBi
∈ JBK for 0 < i ≤ k and JBK = {dB1 , dB2 , . . . , dBk

}

for which B ci
A, then ∃ĉ ∈ Ĉ with ĉ(A) = dAn and B unset.

Proof. Let A,B ∈ P be dependent parameters such that B c A for some configuration c

and c(A) = dAn ∈ JAK. When B c A, there is no possible run of MP in which a transition

with guard over B appears before a transition with guards over A (follows from Lemma

2.3.1). A call to FindUP with a partial configuration ĉ such that ĉ(A) = dAn does not

return B as an unset parameter (follows from Lemma 2.3.3). Therefore, GenPC generates

a partial configuration ĉ ∈ Ĉ with ĉ(A) = dAn and B unset.

43

GenPC returns partial configurations ĉ ∈ Ĉ over parameters. A partial configuration

ĉ is converted to a parameter configuration c by setting the unset parameters in ĉ to an

arbitrary value from their domain. Note that this operation is safe since the arbitrarily set

parameters are not reachable in the instance MP (c). As a result of this operation, Ĉ contains

configurations c that have all parameters set to a value from their domain.

Theorem 2.3.6 (Minimality). The minimal set of parameter configurations is Ĉ.

Proof. Suppose towards contradiction that Ĉ is not minimal. Then there is a minimal set

of configurations Ĉ∗ with Ĉ∗ ⊂ Ĉ. Take c ∈ Ĉ \ Ĉ∗. Now c 6∈ Ĉ∗ implies that there exists a

ci ∈ Ĉ ∩ Ĉ∗ for which B ci
A with ci(A) = c(A) and ci(B) 6= c(B), i.e., the setting of A

in ci makes transitions with guards over B unreachable and hence the setting of B does not

effect configured runs. Since Ĉ contains both c and ci, then from the correctness of GenPC,

B 6 ci
A (follows from Theorem 2.3.4 and Theorem 2.3.5). This contradicts our premise,

and thus Ĉ must be minimal.

2.3.2 Identifying Property Dependencies

In model checking, properties describe the intended behavior of the system. Usually,

properties are iteratively refined to express the designer’s intentions. For small systems, it can

be manually determined if two properties are dependent on one another. However, practically

determining property dependence for large and complex systems requires automation. Given

a set of properties P , and LTS M , an off-the-shelf model checker is called N = |P| times.

In order to check all properties in P , a straightforward possibility is to generate a grouped

property ϕg given by the conjunction of all properties ϕi ∈ P , i.e., ϕg = ∧
i ϕi. However, the

straightforward approach may not scale [CN11a] due to

1. State-space explosion due to orthogonal cone-of-influences of properties.

44

2. Need for additional analysis of individual properties one-by-one in order to discriminate

failed ones and generate individual counterexamples.

3. Computational cost of verifying grouped properties in one run can be significantly

higher than verifying individual properties in a series of runs.

Our goal is to minimize the number of properties checked by intelligently using implicit

dependencies between LTL properties. For two LTL properties ϕ1 and ϕ2 dependence can

be characterized in four ways: (ϕ1 → ϕ2), (ϕ1 → ¬ϕ2), (¬ϕ1 → ϕ2), and (¬ϕ1 → ¬ϕ2).

However, knowing which implication holds for a pair of properties is a difficult task, simply

because they may have been introduced by different verification engineers at different times.

Theorem 2.3.7 allows us to find dependencies automatically.

Theorem 2.3.7 (Property Dependence). For two LTL properties ϕ1 and ϕ2 dependence can

be established by model checking with universal model U .

Proof. There are a total of four cases to consider: (ϕ1 → ϕ2), (ϕ1 → ¬ϕ2), (¬ϕ1 → ϕ2), and

(¬ϕ1 → ¬ϕ2). We show proof for (ϕ1 → ϕ2), since other dependencies follow a similar proof.

From Theorem 2.2.1 we know that a LTL formula ϕ is satisfiable iff U 6|= ¬ϕ. Therefore,

formula ϕ is unsatisfiable iff U |= ¬ϕ. Let ϕ = ¬(ϕ1 → ϕ2). Therefore, if U |= (ϕ1 → ϕ2)

then ¬(ϕ1 → ϕ2) is unsatisfiable or (ϕ1 → ϕ2) is valid, and vice-versa.

The dependencies learned as a result of Theorem 2.3.7 have implications on the verification

workflow. For instance, if ϕ1 → ϕ2 is valid, then for a model M , if M |= ϕ1 then M |= ϕ2.

Of particular interest are (ϕ1 → ϕ2), (¬ϕ1 → ϕ2), and (¬ϕ1 → ¬ϕ2) because they allow

use of previous counterexamples (for (ϕ1 → ¬ϕ2), even if property ϕ1 is true, there is no

counterexample to prove that property ϕ2 is false for model M).

The pairwise property dependencies are stored in a property table as shown in Figure 2.6a.

Each row in the table is a (key, value) pair. For LTL properties ϕ1, ϕ2, and ϕ3 in P , if

45

(a) Initial layout of the property table (b) Results that can be determined based on know-
ing ϕ1 does not hold in model M

Figure 2.6: Property table to store dependence between every LTL property pair in prop-
erty set P . Each row entry in the table is a (key, value) pair. Multiple entries with the
same key have been merged in a single row. E.g., if ϕ1 → ϕ2, the table contains a row
(ϕ1 : T, ϕ2 : T) implying that if property ϕ1 holds for model M then property ϕ2 also holds.

(ϕ1 → ϕ2) is valid, then the table contains a row (ϕ1 : T, ϕ2 : T) implying that if ϕ1 holds

for a modelM then ϕ2 also holds. Similarly, for (¬ϕ3 → ¬ϕ2) the table entry (ϕ3 : F, ϕ2 : F)

implies that if ϕ3 doesn’t hold for M then ϕ2 doesn’t hold. Algorithm CheckRP (Check

Reduced Properties) in Figure 2.7 takes as input a LTSM , a set of LTL properties P , and a

property table T over P . CheckRP selects an unchecked LTL property ϕ, checks whether

ϕ holds in M , and stores the outcome. Based on the outcome, it uses the property table

to determine checking results for all dependent properties and stores them. For example, in

Figure 2.6b, if M 6|= ϕ1, then M 6|= ϕ3, M 6|= ϕ2, and M |= ϕ6. The LTL property to check

is selected using two heuristics H1 and H2.

2.3.2.1 Maximum Dependence Heuristic (H1)

The tabular layout of property dependencies is used to calculate the number of dependen-

cies for each property. The unchecked LTL property with the most right-hand side entries

is selected for verification against the model. If U ⊆ P are unchecked properties in table D,

46

1: array results # initially empty

function CheckRP (M , P , T)

Input: M = LTS (Σ, S, s0, L, δ), P = set of LTL properties, D = property table

2: while unchecked properties remain :

3: ϕ = get unchecked property

4: outcome = ModelCheck(M , ϕ) # outcome = T if M |= ϕ, else F

5: set S = {(ϕ : outcome)}

6: while S is not empty :

7: (p : result) = pop element from S

8: results[p] = result # update result

9: S = S ∪ unchecked properties dependent on (p : result) in D

Figure 2.7: CheckRP algorithm to check LTL properties against a model.

the next LTL property to check is then

ϕ ∈ U : count(ϕ) = max({count(ψ) | ∀ψ ∈ U})

where count(x) = |D[x : T] ∪ D[x : F]| returns the number of dependencies for a LTL

property in table D, and max(S) returns the largest element from S.

2.3.2.2 Property Grouping Heuristic (H2)

Most model-checking techniques are computationally sensitive to the cone-of-influence

(COI) size. Grouping properties based on overlap between their COI can speed up check-

ing. Property affinity [CN11a, CCL+17] based on Jaccard Index can compare the similarity

between COI. For two LTL properties ϕi and ϕj, let Vi and Vj, respectively, denote the

47

function D3 (MP , P)

Input: MP = CTS (Σ, S, s0, L, δ, P, LP), P = set of LTL properties

1: configuration set Ĉ # initially empty

2: parameter queue Pu = FindUP(MP , _)

3: Ĉ = GenPC(MP , Pu, _) # See § 2.3.1

generate property table, see § 2.3.2

4: property table D # initially empty

5: for every property pair (ϕ1, ϕ2) in P : # iterate over all property pairs

6: check if ϕ1 and ϕ2 are dependent and add to property table D

7: for each c in Ĉ : # check configured instances

8: generate instance MP (c) # See § 2.2.4

9: array results # initially empty

10: CheckRP(MP (c), P , D) # See § 2.3.2

11: return results

Figure 2.8: Discovering Design-Space Dependencies (D3) algorithm.

variables in their COI with respect to a model M . The affinity αij for ϕi and ϕj is given by

αij = |Vi ∩ Vj|
|Vi|+ |Vj| − |Vi ∩ Vj|

If αij is larger than a given threshold, then properties ϕi and ϕj are grouped together. The

model M is then checked against ϕi ∧ ϕj. If verification fails, then LTL properties ϕi and

ϕj are checked individually against model M .

2.4 Experimental Analysis

Our revised model checking procedure D3 is shown in Figure 2.8. D3 takes as input a

CTSMP and a set of LTL properties P . It uses GenPC to find the parameter configurations

48

that need to be checked. It then generates a property table to store dependencies between

LTL properties. Lastly, CheckRP checks each instance against properties in P . Results

are collated for every model-property pair.

2.4.1 Benchmarks

We evaluate D3 on two benchmarks derived from real-world case studies.

2.4.1.1 Air Traffic Controller (ATC) Models

These are a set of 1,620 real-world models representing different possible designs for

NASA’s NextGen air traffic control (ATC) system. In previous work, this set of models were

generated from a contract-based, parameterized nuXmv model; individual-model checking

enabled their comparative analysis with respect to a set of requirements for the system

[GCM+16]. In the formulation of [GCM+16], the checking problem for each model is split

in to five phases.3. In each phase, all 1,620 models are checked. For our analysis and to

gain better understanding of the experimental results, we categories the phases based on the

property verification results (unsat if property holds for the model, and sat if it does not).

Each of the 1,620 models can be seen as instances of a CTS with seven parameters. Each

of the 1620 instances is checked against a total of 191 LTL properties. The original nuXmv

code additionally uses OCRA [CDT13] for compositional modeling, though we do not rely

on its features when using the generated model-set.

2.4.1.2 Boeing Wheel Braking System (WBS) Models

These are a set of seven real-world nuXmv models representing possible designs for

the Boeing AIR 6110 wheel braking system [BCFP+15]. Each model in the set is checked

against ∼200 LTL properties. However, the seven models are not generated from a CTS. We
3For a detailed explanation we refer the reader to [GCM+16]

49

Table 2.1: Timing results of 1,620 models for each phase using individual-model checking,
and D3 algorithm. For individual-model checking, Time indicates model checking time,
whereas, for D3, Time indicates preprocessing time + model checking time.

Phase Property
Mix

Properties Model Checking Time
(in hours) Speedup Overall

Speedup
Total (median) Individual D3

I unsat 25 (24) 6.02 4.02 1.5×
4.5×II unsat 29 (19) 12.76 5.17 2.5×

III unsat 29 (1) 139.79 14.80 9.4×
IV sat+unsat 54 (43) 24.81 14.25 1.7× 1.8×V sat+unsat 54 (44) 31.15 16.03 1.9×

TOTAL 191 214.53 54.27 4.0× -

evaluate D3 against this benchmark to evaluate performance on multi-property verification

workflows, and compare with existing work on property grouping [CN11a].

2.4.2 Experiment Setup

D3 is implemented as a preprocessing script in ∼2,000 lines of Python code. We model

check using nuXmv 1.1.1 with the IC3-based back-end. All experiments were performed

on Iowa State University’s Condo Cluster comprising of nodes having two 2.6Ghz 8-core

Intel E5-2640 processors, 128 GB memory, and running Enterprise Linux 7.3. Each model

checking run has dedicated access to a node, which guarantees that there are no resource

conflicts with other jobs running on that node.

2.4.3 Experimental Results

2.4.3.1 Air Traffic Controller (ATC) Models

All possible models are generated by running the C preprocessor (cpp) on the annotated

composite SMV model representing the CTS. Table 2.1 summarizes the results for complete

verification of the ATC design space: 191 LTL properties for each of 1,620 models.

50

1 400 800 1200 1620
Count of configured instances (models)

0.00

7.00

14.25

21.00

24.81

M
od

el
ch

ec
ki

ng
tim

e
(i

n
ho

ur
s)

individual

GENPC
CHECKRP + H1
D3 + H1

(a) Phase IV

1 400 800 1200 1620
Count of configured instances (models)

0.00

10.00

20.00

31.15

16.03

M
od

el
ch

ec
ki

ng
tim

e
(i

n
ho

ur
s)

individual

GENPC
CHECKRP + H1
D3 + H1

(b) Phase V

Figure 2.9: Cumulative time for checking each model for all properties one-by-one (individ-
ual), checking reduced instances for all properties (GenPC), checking all models for reduced
properties (CheckRP + H1), and checking reduced instances for reduced properties (D3 +
H1) for phases IV (Figure 2.9a) and V (Figure 2.9b).

Compared to individual model checking, wherein every model-property pair is checked

one-by-one, verification of the ATC design space using D3 is 4.0× faster. It reduces the

the 1,620 models in the design space to 1,028 models. D3 takes roughly three hours to find

dependencies between LTL properties for all phases. Dependencies established are local to

each model-checking phase and are computed only once per phase. The number of reduced

LTL properties checked for each model in a phase vary; we use CheckRP with the Maximum

Dependence heuristic (H1). Although the logical dependencies are global for each phase, the

property verification results vary for different models. In phases containing unsat properties,

speedup achieved by D3 varies between 1.5× to 9.4×; since all properties are true for the

model, only (ϕ1 : T → ϕ2 : T) dependencies in the property table are used. A median of

one property is checked per model in phase III. For phases IV and V, D3’s performance is

consistent as shown in Figure 2.9a and Figure 2.9b, respectively.

51

Interesting Observation. D3 requires a minimum number of models to be faster than

individual-model checking. When the design space is small, individually checking the models

is faster than verifying using D3. This is due to the fact that D3 requires an initial set-up

time. The number of models after which D3 is faster is called the “crossover point”. For

the benchmark, the crossover happens after ∼120 models. As the number of models, and

the relationships between them increase, the time speedup due to the D3 algorithm also

increases. Moreover, the number properties checked by D3 for every model vary. This is due

to the fact that the next property to check is chosen to maximize the number of yet-to-be-

checked properties for which the result can be determined from inter-property dependencies.

Figure 2.10a and Figure 2.10b shows the number of LTL properties checked per model in

phases IV and V, respectively. Note that all 54 LTL properties are never checked for a

model in either of the phases. D3 dynamically reduces the number of properties checked for

individual models, but provides results for all properties nevertheless.

Overall. From the initial problem of checking 1,620 models against 191 LTL properties,

D3 checks 1,028 models with a median of 129 properties per model (45% reduction of design

space). Once D3 terminates, the model-checking results for each model are compared using

the data analysis technique of [GCM+16].

2.4.3.2 Boeing Wheel Braking System (WBS) Models

LTL Properties for each of the seven models are checked using four algorithms:

1) Single: properties are checked one-by-one against the model,

2) CheckRP: properties are checked using inter-property dependencies,

3) CheckRP + Maximum Dependence (H1): unchecked property with the maximum de-

pendent properties as per inter-property dependencies is checked,

52

(a) Phase IV

(b) Phase V

Figure 2.10: Number of properties dynamically checked for individual models for NASA’s
NextGen air-traffic control system’s design space using the D3 algorithm for phases IV
(Figure 2.10a) and V (Figure 2.10b)

4) CheckRP+ Property Grouping (H2): properties are pairwise grouped and the unchecked

pair with the maximum dependent properties is checked.

Figure 2.11 summarizes the results of verifying properties for every model. On every

call to the model checker, a single or grouped LTL property is checked. CheckRP is

successful in reducing the number of checker runs by using inter-property dependencies. The

Maximal Dependences (H1) and Property Grouping (H2) heuristics improve the performance

of CheckRP, the former more than the latter. The timing results for each algorithm is

shown in Table 2.2.

Analysis. For H2, we limit our experiments to pairwise groupings, however, larger

groupings may be possible (trade-off required between property inter-dependencies and

53

1 2 3 4 5 6 7
Model number

10

100

N
um

be
ro

fc
he

ck
er

ru
ns

(l
og

)

179
236 234 227 227 248 248

23 23 20
25

16
21 21

10 11 11 11 11 11 1111 13 14 12 12 14 15

single CHECKRP CHECKRP + H1 CHECKRP + H2

Figure 2.11: Number of calls made to the model checker to verify all properties in the set for
a model. Every call to the checker verifies one property: single or grouped. For CheckRP,
multiple property results are determined (based on inter-property dependencies) on every
checker run. Heuristics H1 and H2 improve performance of CheckRP.

groupings). It takes ∼50 minutes to establish dependence between properties for a model,

which is much higher than checking them one-by-one without using CheckRP. This brings

us back to the question of estimating a crossover point. However, as the number of models

increase for the same set of properties, CheckRP starts reaping benefits. Nevertheless,

the CheckRP algorithm is suited for multi-property verification in large design spaces and

provides significant end-to-end speedup.

2.5 Summary and Discussion

Our formalisms to model design spaces using Combinatorial transitions systems (CTS) is

extremely versatile, allow for easier maintainability, and is amenable to model checking. We

present an algorithm, Discovering Design-space Dependencies (D3), to increase the efficiency

of LTL model checking for large design spaces. It is successful in reducing the number of

models that need to be verified, and also the properties verified for each model. In contrast

to software product line model checking techniques using an off-the-shelf checker, D3 returns

54

Table 2.2: Timing results (in seconds) for performance of D3’s inter-property dependence
analysis. A property: single or grouped, is verified on each checker run. Overall time
indicates the total time to verify all properties for a model.

Model
Single CheckRP CheckRP+H1 CheckRP+H2

Overall
Time

Checker
Runs

Overall
Time

Checker
Runs

Overall
Time

Checker
Runs

Overall
Time

Checker
Runs

1 17.81 179 2.92 23 1.28 10 2.05 11
2 64.37 236 9.35 23 3.94 11 5.67 13
3 54.22 234 7.11 20 3.40 11 4.97 14
4 53.18 227 9.71 25 3.41 11 5.89 12
5 61.02 227 6.86 16 4.01 11 5.58 12
6 68.24 248 8.34 21 3.93 11 5.34 14
7 58.40 248 7.74 21 3.39 11 5.98 15

the model-checking results for all models, and for all properties. D3 is general and extensible;

it can be combined with optimized checking algorithms implemented in off-the-shelf model

checkers. We demonstrate the practical scalability of D3 on a real-life benchmark models.

We calculate a crossover point as a crucial measure of when D3 can be used to speed up

checking. D3 is fully automated and requires no special input-language modifications; it can

easily be introduced in a verification work-flow with minimal effort. Heuristics for predicting

the cross-over point for other model sets are a promising topic for future work.

Design-space pruning is extremely essential for exact design-space exploration methods.

Our techniques quickly prune the design space for scalable model checking. The front-end

techniques presented in this chapter can benefit from advanced model-checking back-ends

that can reuse verification artifacts across different model-checking runs. Traditionally, these

incremental model-checking algorithms have been limited in applicability: they either save

too much information across runs, or are not practical for large designs. The different

models generated by D3 can be sequentially checked by incremental algorithms to boost

model-checking performance. Instead of restarting verification for the next model, the algo-

rithms may “salvage” verification artifacts from prior runs and achieve significant end-to-end

55

speedups. In the next chapter, we look under the covers of a model checker to optimize

model-checking search for design spaces.

56

CHAPTER 3. INCREMENTAL VERIFICATION

Combinatorial transitions systems (Section 2.2) provide an extremely efficient method-

ology to model design spaces with parameters that enable or disable transitions between

reachable states. Each unique combination of parameter configurations generate a model

that represents a valid individual design in the design space. Some of the designs maybe

redundant and may be pruned by the D3 algorithm presented in Chapter 2. The remaining

models are then checked sequentially using off-the-shelf model checkers against properties

expressing system specifications. Although model checking the pruned design space is con-

siderably faster compared to checking every model in the original design space, specialized

model-checking algorithms can greatly benefit the overall design-space exploration process.

We observe that sequential enumeration of the design space, by parameter-configuring

the associated combinatorial transition system, generates models with small incremental

differences. Typical model-checking algorithms do not utilize this information. They reset

every time a new model is checked, thereby, losing all model-checking artifacts learned for

the previous model. Since the models in the design-space are related, the model checker

can benefit from reusing these artifacts across model-checking runs. Therefore, learning and

reusing information from solving related models becomes very important for future checking

efforts. Figure 3.1 shows the reachable state-spaces for four related models M1,M2,M3,

and M4 in a design space that are checked sequentially against a safety property ϕ. The

model checker first verifies model M1 by exploring its reachable state-space, and concludes

that M1 |= ϕ. A typical model-checking algorithm then resets, and starts verifying model

M2. This is extremely wasteful. Significant verification resources can be saved by reusing

57

Figure 3.1: Venn diagram of reachable state-spaces for four related models M1, M2, M3,
and M4. The model checker learns state-space information for M1, and only verifies the
disjoint state-space for M2

the reachable state-space information learned by the model checker for M1, and then only

verifying the disjoint state-space for M2 (marked by wavy lines).

There is no doubt that incremental verification can tremendously benefit model-checking

of large design spaces. In this chapter, we present a state-of-the-art incremental model-

checking algorithm that saves minimal model-checking information across runs, and effi-

ciently reuses the saved information across different models in the design-space, albeit, after

careful repair. We specifically answer the following questions: 1) What type of model-check-

ing algorithms can benefit from information reuse? 2) What type of information is learned,

and can be saved during model-checking runs? 3) How to efficiently maximize the reuse of

saved information across different models?

The rest of the chapter is organized as follows: Section 3.1 gives an overview of incre-

mental verification and its applicability to model checking design spaces, highlights our con-

tributions for identifying, customizing and efficiently reusing model-checking information,

and contrasts with related work. Section 3.2 gives background information, and formally

introduces incremental verification for design spaces. Section 3.3 details our state-of-the-

art incremental model-checking algorithm and provides proofs of correctness. A large-scale

experimental evaluation on design spaces from NASA and Boeing, and several hardware veri-

58

fication problems forms Section 3.5. Lastly, Section 3.6 concludes the chapter by highlighting

future work and possible extensions to our algorithms.

3.1 Introduction

In the early phases of design, there are several models of the system under development

constituting a design space [BLBM07, GCM+16, MCG+15]. Each model in such a set is

a valid design of the system, and the different models differ in terms of core capabilities,

assumptions, component implementations, or configurations. We may need to evaluate the

different design choices, or to analyze a future version against previous ones in the product

line. Model checking can be used to aid system development via a thorough comparison of

the set of models. Each model in the set is checked one-by-one against a set of properties

representing requirements. However, for large and complex design spaces, such an approach

can be inefficient or even fail to scale to handle the combinatorial size of the design space.

Nevertheless, model checking remains the most widely used method in industry when dealing

with such systems [BCFP+15, GCM+16, JMN+14, MCG+15, MNR+13].

We assume that different models in the design space have overlapping reachable states,

and the models are checked sequentially. In a typical scenario, a model-checking algorithm

doesn’t take advantage of this information and ends up re-verifying “already explored” state

spaces across models. For large models this can be extremely wasteful as every model-

checking run re-explores already known reachable states. The problem becomes acute when

model differences are small, or when changes in the models are outside the cone-of-influence

of the property being checked, i.e., although the reachable states in the models vary, none of

them are bad. Therefore, as the number of models grow, learning and reusing information

from solving related models becomes very important for future checking efforts.

59

We present an algorithm that automatically reuses information from earlier model-

checking runs to minimize the time spent in exploring the symbolic state space in common

between related models. The algorithm, FuseIC3, is an extension to one of the fastest bit-

level verification methods, IC3 [Bra11], also known as property directed reachability (PDR)

[EMB11]. Given a set of models and a safety property, FuseIC3 sequentially checks each

model by reusing information: reachable state approximations, counterexamples (cex), and

invariants, learned in earlier runs to reduce the set’s total checking time. When the differ-

ence between two subsequent models is small or beyond the cone-of-influence of the property,

the invariant or counterexample from the earlier model may be directly used to verify the

current model. Otherwise, FuseIC3 uses reachable state approximations as inputs to IC3

to only explore undiscovered reachable states in the current model. In the former, verifi-

cation completes almost instantly, while in the latter, significant time is saved. When the

stored information cannot be used directly, FuseIC3 repairs and patches it using an effi-

cient SAT-based algorithm. The repair algorithm is the main strength of FuseIC3, and uses

features present in modern SAT solvers. It adds “just enough” extra information to the

saved reachable states to enable reuse. We demonstrate the industrial scalability of FuseIC3

on a large set of 1,620 real-life models for the NASA NextGen air traffic control system

[GCM+16, MCG+15], selected benchmarks from HWMCC 2015 [Bie15], and a set of seven

models for the Boeing AIR6110 wheel braking system [BCFP+15]. Our experiments evaluate

FuseIC3 along two dimensions; checking all models with the same property, and checking

each model with several properties. Lastly, we evaluate the impact of smarter model ordering

and property grouping on the performance of FuseIC3.

3.1.1 Related Work

The idea of reusing model-checking information, like variable orderings, between runs

has been extensively used in BDD-based model checking leading to substantial performance

60

improvement [YBO+98, BBDEL96]. Similarly, intermediate SAT solver clauses and inter-

polants are reused in bounded model checking [MS07a, SKB+16]. Reusing learned invariants

in IC3 speeds up convergence of the algorithm [CIM+11]. These techniques enable efficient

incremental model checking and are useful in regression verification [YDR09] and coverage

computation [CKV06]. The FuseIC3 algorithm is an incremental model-checking algorithm

and is applicable for these scenarios.

Product line verification techniques, e.g., with Software Product Lines (SPL), also ver-

ify models describing large design spaces [CHS+10, CHSL11, CCH+12, BDSAB15]. The

several instances of feature transition systems (FTS) [CCS+13b] describe a set of models.

FuseIC3 relaxes this requirement and can be used to check models that cannot be combined

into a FTS. It outputs model-checking results for every model-property pair in the design

space without dependence on any feature. Nevertheless, SPL instances can be checked using

FuseIC3. Large design spaces can also be generated by models that are parametric over a

set of inputs [DR18]. Parameter synthesis [CGMT13] can generate the many models in a

design space that can be checked using FuseIC3. The parameterized model-checking prob-

lem [EK00] deals with infinite homogeneous models. In our case, the models in a set for the

design-space are heterogeneous and finite.

The work most closely related to ours is a state-of-the-art algorithm for incremental

verification of hardware [CIM+11]. It extends IC3 to reuse the generated proof, or coun-

terexample, in future checker runs. It extracts minimal inductive subclauses from an earlier

invariant with respect to the current model. In our analysis, we compare FuseIC3 with this

algorithm, and show that with the same amount of information storage, FuseIC3 is faster

when checking large design spaces.

61

3.1.2 Contributions

We present a query-efficient SAT-based algorithm for checking large design spaces, and

incremental verification. Our contributions are summarized as follows:

1. Fully automated, general, and scalable algorithm for checking design spaces.

2. Systematic methodology to reuse reachable state approximations to guide bad-state

search in IC3. Our novel procedure to repair state approximations requires little

computation effort and is of individual interest.

3. Overview of locality-sensitive hashing [AI08] techniques to mine model specifications

expressed as And-Inverter-Graph circuits.

4. Heuristics to organize the design space, i.e., partially order models in a set and group

properties based on similarity, to enable higher reuse of reachable state approximations

by FuseIC3 and improve overall performance.

5. Extensive experimental analysis using real-life benchmarks and comparison with exist-

ing state-of-the-art incremental algorithm for IC3.

6. We make all reproducibility artifacts and source code publicly available.1 We provide

detailed explanations, and theorem proofs of correctness for the several sub-algorithms.

3.2 Preliminaries

Definition 3.2.1. A Boolean transition system, or system model M is represented using

the tuple M = (Σ, Q,Q0, δ) where

1. Σ is a finite set of atomic propositions or state variables,
1Raw experimental results available at http://temporallogic.org/research/FMCAD17/

http://temporallogic.org/research/FMCAD17/

62

2. Q is a finite set of states,

3. Q0 ⊆ Q is the set of initial states,

4. δ : Q×Q is the transition relation.

A sequence of states π = s0 → s1 → . . . → sn is a path in M if s0 is an initial state, each

si ∈ Q for 0 ≤ i ≤ n, and for 0 < i < n, (si, si+1) ∈ δ, i.e., there is a valid transition from

state si to state si+1. A state t in a model is reachable iff there exists a path such that sn = t.

Definition 3.2.2. A safety property is a Boolean formula ϕ over Σ.

A transition system M is SAFE, represented as M |= ϕ, iff ϕ holds in all reachable states

of M . Similarly, M is UNSAFE, represented as M 6|= ϕ, iff ϕ does not hold in atleast one

reachable state of M .

Definition 3.2.3. A state variable a ∈ Σ is called an atom, and literal l is an atom a or

its negated form ¬a. A conjunction of literals, i.e., l1 ∧ l2 ∧ . . . ∧ lk, for k ≥ 1, is called a

cube. A disjunction of a set of literals, i.e., l1 ∨ l2 ∨ . . . ∨ lk, for k ≥ 1, is called a clause.

A Boolean formula containing a conjunction (disjunction) of clauses (cubes) is said to be in

Conjunctive Normal Form (CNF) (Disjunctive Normal Form (DNF)).

A primed variable a′, such that a ∈ Σ, represents a in the next time step. If ψ is a Boolean

formula over Σ, ψ′ is obtained by replacing each variable in ψ with the corresponding primed

variable. We assume that a cube (or clause) c can be treated as a Boolean formula, set of

literals, or set of states depending on the context it is used. For example, in the formula

c ⇒ ϕ we treat c as a Boolean formula, in the statement c1 ⊆ c2 we treat c1 and c2 as sets

of literals, and if we say a state t is in c, i.e., c(t) = 1, then we treat c as a set of states.

Similarly, a Boolean formula ψ can be treated as a set of clauses or cubes, or a set of states

depending on the context it is used. A clause c can be weakened (or strengthened) to clause

ĉ by adding (or removing) literals such that ĉ ⊇ c (or ĉ ⊆ c).

63

Definition 3.2.4. Two finite sets ψ1 and ψ2 overlap iff ψ1 ∩ ψ2 6= ∅.

For two transition system models M = (Σ, QM , Q0M
, δM) and N = (Σ, QN , Q0N

, δN) the set

of reachable states are represented as RM = {s ∈ QM | s is reachable in M} and RN = {s ∈

QN | s is reachable in N}, respectively.

Definition 3.2.5. Given two transition system models M = (Σ, QM , Q0M
, δM) and N =

(Σ, QN , Q0N
, δN), we say that M and N are related iff there exists a transformation function

τ such that δN = τ(δM).

The transformation function may be defined by a set of rules that map transitions in model

M to transitions in model N . We assume the existence of such a transformation function.

Note that RM∩RN 6= ∅ for related modelsM and N . A set of models is a collection of related

models. Parameter instantiation generates a set of models from meta-models representing

design-spaces [DR18], or software-product lines [CHS+10]. Moreover, updates to a sequential

circuit design in regression verification, either due to a bug fix or feature addition, generate

related transitions systems [YDR09] that may have overlapping reachable states.

3.2.1 Safety Verification

The safety verification problem is to decide whether a transition system model M =

(Σ, Q,Q0, δ) is UNSAFE or SAFE with respect to a safety property ϕ, i.e., whether there

exists an initial state in Q0 that can reach a bad state in ¬ϕ, or generate an inductive

invariant I that satisfies three conditions:

1. Q0 ⇒ I, i.e., the initial states satisfy the invariant,

2. I ∧ δ ⇒ I ′, i.e., the invariant is inductive, and

3. I ⇒ ϕ, i.e., the invariants satisfies safety property ϕ.

64

In SAT-based model checking algorithms [Bra11, BCCZ99, McM03, VG09], the verification

problem is solved by computing over-approximations of reachable states in M , and using

them to either construct an inductive invariant, or find a counterexample.

3.2.2 Property-Directed Reachability

IC3/PDR [Bra11, Bra12, EMB11, GR16, SB11] is a novel SAT-based verification method

based on property directed invariant generation. Given a model M = (Σ, Q,Q0, δ), and a

safety property ϕ, IC3 incrementally generates an inductive strengthening of ϕ to prove

whether M |= ϕ. It maintains a sequence of frames S0 = Q0, S1, . . . Sk such that each Si, for

0 < i < k, satisfies ϕ and is an over-approximation of states reachable in i-steps or less. If two

adjacent frames become equivalent, IC3 has found an inductive invariant and the property

holds for the model. If a state violating the property is reachable, a counterexample trace is

returned. Throughout IC3’s execution, it maintains the following invariants on the sequence

of frames:

1. for i > 0, Si is a CNF formula, i.e., conjunction of clauses,

2. Si+1 ⊆ Si, i.e., the frame sequence is monotone,

3. Si ∧ δ ⇒ S ′i+1, i.e., states in Si+1 are reachable from Si, and

4. for i < k, Si ⇒ ϕ, i.e., each frame satisfies safety property ϕ.

Each clause added to the frames is an intermediate lemma constructed by IC3 to prove

whetherM |= ϕ. The algorithm proceeds in two phases: a blocking phase, and a propagation

phase. In the blocking phase, Sk is checked for intersection with ¬ϕ. If an intersection is

found, Sk violates ϕ. IC3 continues by recursively blocking the intersecting state at Sk−1,

and so on. If at any point, IC3 finds an intersection with S0, M 6|= ϕ and a counterexample

can be extracted. The propagation phase moves forward the clauses from preceding Si to

65

Si+1, for 0 < i ≤ k. During propagation, if two consecutive frames become equal, a fix-point

has been found and IC3 terminates. The fix-point I represents the strengthening of ϕ and

is an inductive invariant that satisfies the three conditions of Section 3.2.1.

3.2.3 Problem Formulation

We reduce the task of verifying a set of models by restricting the description of our

algorithm to two related models M = (Σ, QM , Q0M
, δM) and N = (Σ, QN , Q0N

, δN) in the

set. Each model has to be checked against a safety property ϕ. Assume that model M is

checked first. The algorithm computes frame sequence R and S for M and N , respectively.

|R| denotes number of frames in the sequence R.

3.2.3.1 Problem Definition

Given two related models M = (Σ, QM , Q0M
, δM) and N = (Σ, QN , Q0N

, δN), and a

safety property ϕ, let R = R0, R1, R2, . . . , Rm be the sequence of frames computed by IC3

that satisfies the invariants of Section 3.2.2. We want to reuse the reachable state approx-

imations of M to model-check property ϕ against model N , i.e., compute frame sequence

S = S0, S1, S2, . . . , Sn for model N that satisfies invariants of Section 3.2.2 by reusing frame

sequence R such that Si+1 = R̂i+1, where R̂i+1 = Ri+1 if Si ∧ δN ⇒ R′i+1, otherwise R̂i+1

is obtained by strengthening or weakening clauses in Ri+1 such that ∀c ∈ Ri+1, we have

Si ∧ δN ⇒ ĉ′ and Si ∧ δN ⇒ R̂i+1.

3.2.3.2 SAT with Assumptions

In our formulation, we consider sat queries of the form sat(ϕ, γ), where ϕ is a CNF

formula, and γ is a set of assumption clauses. A query with no assumptions is simply written

as sat(ϕ). Essentially, the query sat(ϕ, γ) is equivalent to sat(ϕ∧ γ) but the implementation

of the former is typically more efficient. If ϕ ∧ γ is:

66

1. sat, get-sat-model() returns a satisfying assignment.

2. unsat, get-unsat-assumptions() returns a unsatisfiable core β of the assumption clauses

γ, such that β ⊆ γ, and ϕ ∧ β is unsat.

We abstract the implementation details of the underlying sat solver, and assume interaction

using the above three functions.

3.3 Algorithm for Incremental Verification

In this section, we present our main contribution, FuseIC3. We start with the core idea

behind the algorithm by giving the intuition behind recycling IC3-generated intermediate

lemmas. We then provide a general overview of different sub-algorithms that help FuseIC3

achieve its performance. We next describe the two main components: basic check and frame

repair of FuseIC3.

3.3.1 Information Learning

Recall that the frame sequences computed by IC3 represent over-approximated states.

WhenM is checked with IC3, frames R0, R1, . . . , Rj, are computed such that Ri∧δM ⇒ R′i+1

for i < j (invariant 3, Section 3.2.2). In the classical case, checking N after M requires

resetting and restarting IC3, which then computes frames S0, S1, . . . , Sk for N . Due to

the reset, all intermediate lemmas are lost and verification for N has to start from the

beginning. However, since M and N are related, the frames for M and N overlap, and

therefore, frames for M can be recycled and potentially reused in the verification for N .

The idea is illustrated using Venn diagrams in Figure 3.2. The parallelogram and ellipse

represent clauses c1 and c2 learned by IC3 during a model-checking run, respectively, in

frame Ri+1 such that Ri+1 = c1 ∧ c2, and the triangle represents states reachable from Ri in

67

(a) (b)

(c) (d)

Figure 3.2: Intuition behind repairing frames computed for one model by IC3, and reusing
them for checking another related model in the design space.

one step, i.e., Ri ∧ δM . Therefore, Ri ∧ δM ⇒ R′i+1. Now consider a scenario in which we

recycle the clauses in Ri+1 when verifying N . The triangle and the rectangle in Figure 3.2b

represent the states reachable from Si in one step. If we were to make Si+1 = Ri+1, we end

up with Si ∧ δN 6⇒ S ′i+1 since c1 doesn’t contain some states reachable from Si. Therefore,

we have to modify c1 such that the invariant holds. Figure 3.2c and 3.2d show the two

possible modifications of c1. In the former case, we add states (Si ∧ δN) \ c1 to c1 such that

ĉ1 = c1 ∪ (Si ∧ δN) \ c1. In the latter, we over-approximate c1 to ĉ1 such that Si ∧ δN ⇒ ĉ1

(a trivial over-approximation is to make c1 equal to the set of all states). Irrespective of the

approach used, we end up with Si ∧ δN ⇒ R̂′i+1 = S ′i+1, where R̂i+1 = ĉ1 ∧ c2. Then we

check the (i + 1)-th step over-approximation for intersection with ¬ϕ and IC3 continues.

Therefore, reusing clauses from model M , saves a lot of effort in rediscovering these clauses

for model N , and thus helps IC3 converge faster in finding an invariant or counterexample.

68

3.3.2 Information Repair and Reuse

FuseIC3 is a bidirectional reachability algorithm. It uses forward reachability to reuse

frames from a previously-checked related model, and IC3-type backward reachability to

recursively block predecessors to bad states. The algorithm description appears in Figure 3.3.

FuseIC3 takes as input the initial states Q0 and the transition relation δ for the cur-

rent model, and a safety property ϕ. The internal state maintained by the algorithm is

last_invariant, last_cex, and the frames R computed for the last model verified. Initially,

the state is empty. Lines 1–2 perform basic checks in an attempt to reuse proofs from an

earlier run to verify the current model. Lines 4–15 loop until an invariant or a counterexam-

ple is found. FuseIC3 maintains a sequence of frames S0, S1, . . . , Sk for the current model

being checked. Whenever a new frame Sk is introduced in line 10, the algorithm reuses a

frame from R after repairing it with FrameRepair. The repaired frame is added to Sk,

which after propagation in lines 11–15, is checked for intersection with a bad state. A typical

execution of IC3 follows until a new frame is introduced. Upon termination, R is replaced

with the current set of frames S, and last_invariant and last_cex are updated accordingly.

The FrameRepair algorithm of Figure 3.4 takes as input an integer i. It checks if

frame sequence Ri+1 from model M can be used as is in line 1. If yes, Ri+1 is returned.

Otherwise, the frame is repaired in lines 2–7. FindClauses finds violating clauses in Ri+1.

Each of these clauses is repaired in lines 4–7 using ExpandClause and ShrinkClause.

After repair, the updated frame R̂i+1 is returned.

The models in a set are checked sequentially. When FuseIC3 is run on the first model

in the set, it reduces to running typical IC3. During propagation and when k < |R|, only

repaired clauses (from FrameRepair) and discovered clauses for the current model are

propagated. When k ≥ |R|, FrameRepair returns an empty frame and all clauses from

earlier frames take part in propagation.

69

bool FuseIC3 (Q0, δ, ϕ)

Input: Q0 = initial states, δ = transition relation, ϕ = safety property

1: if CheckInvar(Q0, δ, last_invariant, ϕ) : return true

2: if SimulateCex(Q0, δ, last_cex, ϕ) : return false

3: k ← 0, Sk ← Q0 # first frame is initial state

4: while true : # main algorithm loop

5: while sat(Sk ∧ ¬ϕ) : # blocking phase

6: s← get-sat-model()

7: if not recursive_block(s, k) :

8: last_cex ← extract_cex(), return false

9: k ← k + 1

10: Sk ← FrameRepair(k − 1)

11: for i← 1 to k − 1 : # propagation phase

12: for each new clause c ∈ Si :

13: if not sat(Si ∧ c ∧ δ ∧ ¬c′) : add c to Si+1

14: if Si ≡ Si+1 : # found fix-point invariant

15: last_invariant ← Si, return true

Figure 3.3: High-level description of the FuseIC3 algorithm. Parts of the algorithm for
typical IC3 are based on the description in [EMB11, GR16].

70

frame FrameRepair (int i)

Input: i = current frame number in the sequence

1: if not sat(Si ∧ δ ∧ ¬R′i+1) : return Ri+1

2: G ← FindClauses(Si, δ, Ri+1)

3: R̂i+1 ← Ri+1 \ G

4: for each clause c ∈ G :

5: ĉ← ExpandClause(Si, δ, c) # weaken clause c

6: ĉ← ShrinkClause(Si, δ, c, ĉ) # strengthen clause c

7: R̂i+1 ← R̂i+1 ∧ ĉ

8: return R̂i+1 # repaired frame Ri+1

Figure 3.4: The FrameRepair algorithm to reuse and reachable state sequences across
model-checking runs by efficiently repairing violating clauses. The violating clauses are either
expanded (weakened) or shrunk (strengthen) to enable their reuse for the current run.

3.3.2.1 Basic Checks

It is possible that the changes in design between two models are very small, and are

outside the cone-of-influence of the verification procedure. Therefore, although the models

are different, they might have the same over-approximated inductive invariant with respect to

the property being checked. A similar argument applies for two models that fail a property.

In this case, a counterexample for the first model might be a valid counterexample for the

second model. Both these checks can be carried out in very little time as explained below.

For the case when M and N have different state variables, cone-of-influence with respect to

variables in N is applied on the invariant/counterexample before performing the checks.

Inductive Invariant. If IM is an inductive invariant for M with respect to a safety

property ϕ, it satisfies the following three conditions:

71

1. Q0M
⇒ IM , i.e., initial states of M satisfy invariant IM ,

2. IM ∧ δM ⇒ I ′M , i.e., invariant IM is inductive with respect to δM , and

3. IM ⇒ ϕ, i.e., invariant satisfies safety property ϕ.

If the model differences between M and N are small, or changes in N are outside the cone-

of-influence of IM , then N |= ϕ iff the following conditions hold for N :

1. Q0N
⇒ IM , i.e., initial states of N satisfy invariant IM ,

2. IM ∧ δN ⇒ I ′M , i.e., invariant IM is inductive with respect to δN and, and

3. IM ⇒ ϕ, i.e., invariant satisfies safety property ϕ.

Counterexample Trace. If M 6|= ϕ, then a typical run of IC3 generates a counterex-

ample trace with states s0, s1, . . . sk to prove satisfaction of ¬ϕ such that

1. s0 ∈ Q0M
, i.e., state s0 is an initial state,

2. (si, si+1) ∈ δM for i < k, i.e., state Si+1 is reachable from state Si in model M , and

3. sk ∈ ¬ϕ, i.e., state sk is a bad-state and violates property ϕ.

We simulate the counterexample trace for M on N and check if it satisfies the above three

conditions (using k + 1 sat calls). If the conditions are satisfied, the counterexample trace

is a valid trace in N , and we conclude that N 6|= ϕ.

To summarize, if changes in two subsequent models are outside the cone-of-influence of

the proofs generated by IC3, verification completes almost instantly. The pseudo-code for

these two basic checks is given in Figure 3.5.

72

bool CheckInvariant (Q0, δ, I, ϕ)

Input: Q0 = initial states, δ = transition relation, I = saved invariant, ϕ = safety property

1: if not sat(Q0 ∧ ¬I) and not sat(I ∧ δ ∧ ¬I) and not sat(I ∧ ¬ϕ) : return true

2: else return false

bool SimulateCex (Q0, δ, s, ϕ)

Input: Q0 = initial states, δ = transition relation, s = saved counterexample trace

ϕ = safety property

1: if not sat(s0 ∧Q0) : return false

2: if not sat(sk ∧ ¬ϕ) : return false

3: for i← 0 to len(s) : # simulate counterexample trace

4: if not sat(si ∧ δ ∧ s′i+1) : return false

5: return true # valid counterexample

Figure 3.5: CheckInvariant evaluates the last known invariant against the current
model, and returns true if invariant holds, otherwise false. SimulateCex simulates the last
known counterexample on the current model, and returns true if successful, otherwise, false.

3.3.2.2 Frame Repair

We want to find all clauses in frame Ri+1 that are responsible for the violation of Si∧δN ⇒

R′i+1. The satisfiability model is a pair of states (a, b) such that a ∈ Si, b 6∈ Ri+1, and

(a, b) ∈ δM . In other words, b is missing from some, or all clauses in Ri+1. If all such

missing states are added to clauses in Ri+1, resulting in R̂i+1, the condition Si ∧ δN ⇒ R̂′i+1

becomes valid and R̂i+1 can be reused in checking N . Adding these states one-by-one requires

several calls to the underlying sat solver and is infeasible in practice (reduces to all-sat).

Instead, we approximate the violating clauses in Ri+1. The over-approximation ends up

73

adding several states to Ri+1 that are in the post-image of multiple states in Si. As the first

step in repairing the frame, we find all such violating clauses.

Finding Violating Clauses: Let’s assume that frame Ri+1 is composed of a set of

clauses C = {c1, c2, . . . cn}. Then there are clauses G ⊆ C such that the assertion Si∧δN ⇒ c′

is violated for all c ∈ G. Set G can be found by brute-forcing the assertion check for all

clauses in C. However, such an approach doesn’t scale for complex verification problems

as IC3 frames can often have thousands of clauses. Algorithm FindClauses, which is

inspired by the Invariant Finder algorithm in [CIM+11], efficiently finds all such violating

clauses.Figure 3.6 shows a query-efficient algorithm to find all violating clauses.

FindClauses takes as input frame S = Si, transition relation δ = δN , and frame

R = Ri+1. Upon termination, it returns all violating clauses. An auxiliary variable yi is

introduced for each clause ci in R in line 2. Lines 3–4 are equivalent to adding the assertion

ci ⇒ yi to the solver. Lines 6–10 loop until the query in line 6 is sat. On every iteration

of the loop, there is at least one yi that is assigned false. Clauses ci corresponding to all

such yi are added to G and yi is removed from the query. When the query becomes unsat,

G contains all violating clauses in R, and is returned. In practice, multiple yi are assigned

false which helps terminate the loop faster.

Theorem 3.3.1. Given the current frame sequence S, transition relation δ, and frame se-

quence to reuse R, the FindClauses algorithm (Figure 3.6) returns all violating clauses

ci ∈ R such that S ∧ δ 6⇒ c′i.

Proof. For each clause ci ∈ R, we introduce an auxiliary variable yi. For each literal l ∈ c′i,

we add the assertion ¬l∧yi to the solver. Let’s assume ci = l1∨ l2∨ . . .∨ lk. We add asertions

¬l′1 ∨ yi, ¬l′2 ∨ yi, . . . , ¬l′k ∨ yi to the solver. Therefore, the overall assertion for clause ci

74

FindClauses (S, δ, R)

Input: S = current frame for model N , δ = transition relation for model N ,

R = frame to reuse from model M

Output: G = violating clauses in R

1: for each clause ci ∈ R : # configure solver assertions

2: introduce auxiliary variable yi

3: for each literal l ∈ c′i :

4: add assertion ¬l ∨ yi to solver

5: G ← ∅ # set is initially empty

6: while sat(S ∧ δ, (¬y1 ∨ ¬y2 ∨ . . . ∨ ¬yk)) :

7: α← get-sat-model()

8: for each y1, y2, . . . yk :

9: if α(yi) == ⊥ :

10: add ci to G and remove yi from sat query

11: return G # set of violating clauses

Figure 3.6: FindClauses algorithm to find all violating clauses ci ∈ R such that S∧δ 6⇒ c′.
Upon termination, the set G contains all violating clauses.

added is (¬l′1 ∨ yi) ∧ (¬l′2 ∨ yi) ∧ . . . ∧ (¬l′k ∨ yi). Now

(¬l′1 ∨ yi) ∧ (¬l′2 ∨ yi) ∧ . . . ∧ (¬l′k ∨ yi)

⇔ (¬l′1 ∧ ¬l′2 ∧ . . . ∧ ¬l′k) ∨ yi

⇔ ¬(l′1 ∨ l′2 ∨ . . . ∨ l′k) ∨ yi

⇔ ¬c′i ∨ yi

⇔ c′i ⇒ yi

75

Therefore, the operation performed in lines 1–4 of FindClauses is equivalent to adding the

assertion c′i ⇒ yi for each clause ci ∈ R. Initially, the set of violating clauses G is empty. For

the sake of argument, let’s assume R contains only one clause c1. If c1 = l1 ∨ l2 ∨ . . . ∨ lk,

then the assertions added to the solver are ¬l′1 ∨ y1, ¬l′2 ∨ y1, . . . , ¬l′k ∨ y1. Moreover, the

sat query of line 6 adds the assertions S ∧ δ, and assumes ¬y1. Combined, these assertions

are equivalent to (S ∧ δ ∧¬y1 ∧¬c′1) or (S ∧ δ ∧¬y1 ∧¬R′). There are two cases to consider

based on whether the assertion is:

1. unsat: The post-image of all states in S is in R, and c1 is not a violating clause.

Therefore, FindClauses terminates and returns G = ∅.

2. sat: We know that the sat model for S ∧ δ ∧ ¬y1 ∧ ¬R′ is a pair of states (a, b′) such

that a ∈ S, (a, b′) ∈ δ, but b′ 6∈ R′, and an assignment to y1. Since R contains only one

clause, b′ 6∈ R′ if and only if b′ 6∈ c′1. In other words, none of the literals in c′1 match

the literal assignments in state b′. Therefore, ¬l′1, ¬l′2, . . . , ¬l′k are true, which makes

¬c′1 true. The only possible assignment to y1 is false. Therefore, since c1 is a violating

clause, the corresponding auxiliary variable is assigned false. Clause c1 is added to G

in lines 9–10, and the sat query is updated.

Therefore, upon termination G = ∅ or G = {c1} if S∧δ∧¬R′ is unsat and sat, respectively.

The argument for R containing only one violating clause can be extended to multiple clauses.

If a state b′ in the sat model is missing from multiple clauses in R, their corresponding

auxiliairy variables get assigned to false, and all such clauses are added to G and the query

updated. On every iteration of the loop in lines 6–10, a new state pair is found until all

violating clauses have been removed from R and added to G. Therefore, upon termination,

set G contains all violating clauses ci ∈ R such that S ∧ δ 6⇒ c′i.

After discovering all violating clauses, FuseIC3 attempts to expand them, by adding

literals, before reusing Ri+1 to check model N . In the trivial case, each violating clause can

76

be removed from Ri+1. However, doing this is quite wasteful. For example, consider a frame

in which all clauses are violating. Reusing this frame entails restarting IC3 from an empty

frame, a scenario we want to avoid. Instead, we rely on efficient use of the sat solver to

over-approximate the violating clauses.

Expanding Violating Clauses: A clause c is violating if none of its literals match the

literals in state b (recall the model (a, b) to the sat query Si∧δN ⇒ R′i+1). If any literal from

b is added to c, resulting in ĉ, then b ∈ ĉ. Fundamentally, we want to add literals to clause c

without actually enumerating all such b such that the assertion Si ∧ δN ⇒ ĉ′ holds. A literal

can be added as is, or in its negated form. Adding both makes the assertion trivially valid.

For example, consider a system with variables x, y, z, and a violating clause c = (x∨y). Our

aim is to add states to c. Either z or ¬z can be added to c, but not both. However, deciding

what to add to make the assertion valid is beyond the scope of a sat solver. 2 Instead,

we use an efficient randomized algorithm, ExpandClause, to add literals to clause c. The

pseudo-code for the algorithm is given in Figure 3.7.

ExpandClause takes as input frame S = Si, transition relation δ = δN , and the

violating clause c ∈ Ri+1. Initially, ĉ = c. Lines 1–3 find all variables that are missing from c

and store them in set B. The loop in lines 4–9 is repeated until set B becomes empty, or the

query S∧δ ⇒ ĉ′ becomes valid. In the latter case, enough literals have been added to expand

c and the algorithm can terminate. From the sat model α, randomly pick an assignment

to a variable in B. If the assignment is true, add the variable as is to ĉ, otherwise, negate

variable and add to ĉ. The added variable is removed from B and the loop continues. When

all possible variables have been added to ĉ and the assertion is still sat, return ĉ to be the

empty clause (c = true, or set of all states) in line 10.

2The resulting query is of the form ∃∀. and in 2QBF.

77

ExpandClause (S, δ, c)

Input: S = current frame for model N , δ = transition relation for model N ,

c = violating clause

Output: ĉ = weakened clause

1: v ← all primed variables in δ

2: l← all variables in clause c′

3: B ← v \ l # variables not in clause c

4: ĉ← c # initially ĉ = c

5: while |B| > 0 and sat(S ∧ δ ∧ ¬ĉ′) : # iterative until no more literals are left

6: α← get-sat-model() # get variable assignments

7: randomly pick any b′ ∈ B

8: if α(b′) == > : add b to clause ĉ

9: else if α(b′) == ⊥ : add ¬b to clause ĉ

10: remove b′ from B # no longer under consideration

11: if sat(S ∧ δ ∧ ¬ĉ′) : return ∅

12: return ĉ # expanded clause; S ∧ δ ⇒ ĉ′

Figure 3.7: ExpandClause algorithm to add literals to violating clause c such that
S ∧ δ ⇒ ĉ′. Upon termination, an empty clause is returned if expansion fails.

78

Theorem 3.3.2. Given the current frame sequence S, transition relation δ, and violating

clause c, the ExpandClause algorithm (Figure 3.7) weakens violating clause c to generate

clause ĉ such that Si ∧ δ ⇒ ĉ′.

Proof. In line 3, set B contains all primed variables not in clause c′. Initially, ĉ′ = c′. The

sat model of the query S ∧ δ ∧ ¬ĉ′ is pair of states (a, b′) such that a ∈ S, (a, b′) ∈ δ, but

b′ 6∈ ĉ′. We know that b 6∈ ĉ if none of the literals in ĉ match a literal in state b. If we pick

a literal in b and add it to ĉ, then b ∈ ĉ. The variable corresponding to the added literal is

removed from B and the loop repeats. On every iteration of the loop in lines 5–10, multiple

states are added to ĉ. The loop terminates when S ∧ δ ∧ ¬ĉ′ is unsat, or B is empty. In

the former case, ExpandClause returns ĉ, while in the latter, c is weakened to ĉ = true (all

states are reachable from S) and returned.

Shrinking Expanded Clauses: Due to the randomized nature of the ExpandClause

algorithm, we may end up adding more states than required to the expanded clauses. As

a last step in repairing the frame, we remove the excess states added from all such clauses,

albeit, maintaining the over-approximation. FuseIC3 uses unsat assumptions generated

in the proof for Si ∧ δ ⇒ ĉ′ to shrink clause ĉ to c̃. In principle, we can use the minimal

unsat assumptions for the query to provide the smallest clause c̃ such that Si ∧ δ ⇒ c̃′.

However, finding minimal unsat assumptions is often very expensive. Moreover, the need

for minimality can often be traded for faster implementation by utilizing first-available unsat

assumptions. The ShrinkClause algorithm strengthens ĉ by dropping a subset of the newly

added literals from ĉ. The pseudo-code for the algorithm is given in Figure 3.8.

ShrinkClause takes as input frame S = Si, transition relation δ = δN , violating

clause c, and the expanded clause ĉ. Set v contains all literals that were added to clause

c by ExpandClause to generate clause ĉ. Lines 2–5 loop until enough literals have been

dropped from ĉ such that the Si ∧ δN ∧ ¬c′ ∧ ¬v′ is valid. On each iteration of the loop, a

79

ShrinkClause (S, δ, c, ĉ)

Input: S = current frame for model N , δ = transition relation for model N ,

c = violating clause, ĉ = expanded clause

Output: c̃ = strengthened clause

assert(not sat(S ∧ δ ∧ ¬ĉ′))

1: v ← {literals in ĉ} \ {literals in c} # find excess literals

2: c̃← c # initially c̃← c

3: for each l ∈ v : # try dropping literals one-by-one

4: g ← v \ l # drop literal l

5: if not sat(S ∧ δ ∧ ¬c′,¬g′) :

6: v ← {literal j | j′ ∈ get-unsat-assumptions()} # required literals

7: return c̃← c̃ ∨ ∨{literals in v} # shrunk clause; S ∧ δ ⇒ c̃′

Figure 3.8: ShrinkClause algorithm to remove excess literals from clause c while main-
taining S ∧ δ ⇒ c′.

literal l to drop from v is chosen. If the assertion is unsat, we can successfully drop l from

v, and replace v with the unsat assumption literals in the query. However, if the assertion

is sat, l is a required literal in v and needs to be retained, so we try dropping another literal.

Theorem 3.3.3. Given the current frame sequence S, transition relation δ, and violating

clause c, the ShrinkClause algorithm (Figure 3.8) strengthens clause ĉ to generate clause

c̃ such that S ∧ δ ⇒ c̃′ and |c̃| ≤ |ĉ|.

Proof. In line 1, set v contains excess literals added to expand c to ĉ, i.e., all literals that are

added to c such that S ∧ δ ∧ ¬ĉ′ is unsat. Initially, c̃ = c. On every iteration of the loop in

lines 3–6, we pick a literal l to drop from ĉ. If S ∧ δ¬c′∧¬g′ is sat, where g = v \ l, then l is

a required literal and we try dropping another literal. If S ∧ δ¬c′ ∧¬g′ is unsat, we extract

80

the unsat core of the assumption literals. The unsat core is not necessarily minimal. v is

made equal to the unsat assumption literals and the loop repeats. Upon termination, set v

contains the minimum number of literals, which when added to clause c to generate clause

c̃, are enough to ensure that S ∧ δ ⇒ c̃′.

The violating clause may appear in future frames in R (due to the propagation phase

when checking M). The modification is reflected in all occurrences of the clause. All such

violating clauses in Ri+1 are repaired.

Theorem 3.3.4. Given the current frame sequence Si and transition relation δ for model N ,

and frame sequence Ri+1 for model M , the FrameRepair algorithm (Figure 3.4) repairs

frame Ri+1 to R̂i+1 such that Si ∧ δ ⇒ R̂′i+1.

Proof. The proof follows directly from Theorems 3.3.1, 3.3.2, and 3.3.3. All violating clauses

in Ri+1 are found by the FindClauses algorithm. (Theorem 3.3.1). The ExpandClause

algorithm (Theorem 3.3.2 weakens every violating clause c ∈ Ri+1 to generate clause ĉ.

The expanded clause ĉ is then strengthened to clause c̃ by the ShrinkClause algorithm

(Theorem 3.3.3). The repaired clause is added R̂i+1. Therefore, upon termination, the

FrameRepair algorithm returns repaired frame R̂i+1 such that Si ∧ δ ⇒ R̂′i+1.

The repaired frame sequenceR̂i+1 is added to the set of frame sequences for N at step

i + 1. Therefore, Si+1 = R̂i+1. Clauses are propagated from frames Sj, for j ≤ i, to Si+1,

which is checked for intersection with the negated safety property ϕ representing bad states,

followed by normal execution of blocking and propagation phases of the IC3 algorithm.

3.4 Organizing the Design Space

If models M and N have similar reachable states, FuseIC3 can reuse most of the reach-

ability clauses learned for M when verifying N . However, determining models that have

81

similar states is hard. The situation worsens when we are dealing with design spaces con-

taining hundreds of models. We use two preprocessing heuristics to organize the design

space: partially order the models, and group similar properties, that improve the perfor-

mance of FuseIC3. We use locality-sensitive hashing [AI08] to order models in the design

space, and group properties. We assume that the transition relation δ, for a model M , is a

CNF formula over current- and next-state variables.

3.4.1 Hashing Techniques and Similarity Measure

Traditional hashing techniques map data from one domain to another. An ideal hash

function h is an injective function that maps arbitrary sized data to data of fixed size. For

example, a mapping from a string of characters to a 32-bit integer. Formally, H : U → V ,

where U and V are the domain of input objects, and fixed size hash value, respectively.

Ideally, for two objects X, Y ∈ U ,

1. H(X) = H(Y) for X = Y , i.e., identical objects map identical hash values, and

2. H(X) 6= H(Y) for X 6= Y , i.e., different objects map to different hash values.

A good hash function produces a large change in output for small changes in input. Hashing

techniques find widespread use in databases, cryptography, and DNA sequencing [CZ17] to

find duplicates. Two objects X and Y are same, or equivalent, if H(X) = H(Y). However,

traditional hashing techniques do not allow to find objects that are similar, e.g., the words

“color” and “colors” are similar, but not same; a hash function will produce vastly different

outputs for these two inputs.

Locality-sensitive hashing (LSH) [AI08] is a technique that finds similar objects. LSH

hashes inputs such that similar items map to the same bucket. In contrast to traditional

hashing, LSH aims to maximize the probability of a collision for similar items. An LSH

82

scheme for a universe of objects U , and similarity function S : U×U → [0, 1] is a probability

distribution over a set H of hash functions such that

PrH∈H[H(X) = H(Y)] = S(X, Y) for any X, Y ∈ U

Hash collisions capture the similarity between two objects. Possible measures for the

similarity function include Euclidean distance, Jaccard similarity, Hamming distance, edit

distance, etc. For our heuristic to partially order models in the design space, we use LSH

with Jaccard distance as the similarity function. The Jaccard similarity coefficient for two

sets X and Y is given by

S(X, Y) = J(X, Y) = |X ∩ Y |
|X ∪ Y |

The goal of LSH is to find all similar objects in U based on their Jaccard similarity.

The MinHash algorithm [BCFM00] is used to estimate the Jaccard similarity coefficient.

Assuming that objects correspond to text documents, for every document Di, we compute

k minhash signatures using random hash functions. A minhash signature for a document D

using a random hash function h is given by

hmin(D) = min({h(x) | x ∈ D})

The signatures for each of the n documents are then divided into b bands of r rows each such

that b ∗ r = k. Two documents are similar if they share the exact same minhash signature

on all rows of atleast one band. Figure 3.9 shows locality-sensitive hashing on a set of five

documents D1, D2, D3, D4, and D5. Documents D1 and D3 are similar because they have

the exact same minhash signatures for all rows in band 1. Documents D2 and D4 are also

similar as they have signatures in all rows of band 5.

The probability that two documents A and B share the same signatures on all rows of

atleast one band is given by 1− (1−J(A,B)r)b and can be estimated using the step function

approximation (1
b
) 1

r [RU11]. To estimate the values of b and r for k = 400 and a Jaccard

83

Figure 3.9: Locality-sensitive hashing to find similar documents in a set. Documents D1
and D3, and documents D2 and D4 are similar from bands 1 and 5, respectively because
they have the exact same minhash signatures on all rows of at least one band.

similarity threshold of t = 0.9, we have

(1
b

)1
r = t ⇒

(1
b = 20

) 1
r = 20 = 0.86 ≈ 0.9

Locality-sensitive hashing with minhash signatures will map documents that have their Jac-

card coefficient higher than t to the same bands with high probability. For more details on

locality-sensitive hashing with minhash we refer the reader to [RU11]. An important point

to note is that LSH gives an O(n) approximate algorithm to find similarities, compared to

the quadratic algorithm for pairwise similarity. For our heuristics, the k hash functions for

minhash signatures are generated by MurmurHash3 [App] with different seed values.

3.4.2 Partial Model Ordering

Let model-setM = {M1,M2, . . . ,Mn} consist of related models of a design space, e.g.,

generated by parameter instantiating a combinatorial transition system [DR18]. Locality-

sensitive hashing is a favorable technique to find similar models in the design space; there

is a high probability that models contain the same transition relation clauses. If the CNF

84

formula representing the transition relation for the models is expressed in DIMACS CNF

format3, then a clause can be interpreted as a string of integers separated by whitespace and

terminated with 0, and the CNF formula is a set of strings. Therefore, the transition relation

δMi
for model Mi ∈M can be viewed as a text document Di containing strings representing

clauses. Our LSH routine takes as input a set of documents corresponding to every model

in the model-set. The partial model ordering (MO) heuristic works as follows:

1. Find groups of similar models using locality-sensitive hashing.

2. Consecutively check models in a group using FuseIC3 with a property ϕ.

The different groups containing similar models are checked in random order, or in parallel as

discussed in Chapter 5. We use a Jaccard similarity coefficient of 0.9 for the partial model

ordering heuristic to group similar models.

3.4.3 Property Grouping

Model checking techniques are computationally sensitive to the cone-of-influence (COI)

size. Therefore, grouping properties based on overlap between support variables, or clauses

containing support variables, in the COI of the property can speed up checking. Property

affinity [CCL+17, CN11b] based on Jaccard similarity can compare the degree of overlap

between COI. We generalize affinity to measure overlap between clauses. For two properties,

ϕi and ϕj, let Ci and Cj, respectively, denote the clauses containing support variables with

respect to a model M . The affinity αij is then calculated as

αij = |Ci ∩ Cj|
|Ci|+ |Cj| − |Ci ∩ Cj|

If αij is larger than a given threshold, then properties ϕi and ϕj are conjoined together. The

modelM is then checked against ϕi∧ϕj. If verification fails, the violated property is removed
3http://www.satcompetition.org/2009/format-benchmarks2009.html

http://www.satcompetition.org/2009/format-benchmarks2009.html

85

from the conjunction, and the remaining property is checked. The property grouping (PG)

heuristic works as follows:

1. Find groups of similar properties using locality-sensitive hashing (approximate).

2. Conjoin similar properties that have affinity larger than a threshold (exact).

3. Consecutively check conjoined properties using FuseIC3 with a model M .

The document to hash consists of clauses containing support variables, and the safety prop-

erty clauses. The groups can be checked sequentially in random order, or in parallel for

maximum throughput. We use a Jaccard similarity coefficient of 0.9 for finding similar

properties, and a property affinity threshold of 0.95 for grouping properties.

3.5 Experimental Analysis

In this section, we report on our extensive experimental analysis with the FuseIC3 al-

gorithm. We briefly detail our benchmarks, summarize the setup used for the experiments,

and end with experimental results and a discussion of results.

3.5.1 Benchmarks

We evaluate FuseIC3 over a large collection of challenging benchmarks. The benchmarks

are derived from real-world case studies and modified benchmarks from the Hardware Model

Checking Competition (HWMCC) [Bie15] 2015.

3.5.1.1 Air Traffic Controller (ATC) Models

The benchmark consists of a large set of 1,620 real-world models representing different

possible designs for NASA’s NextGen air traffic control (ATC) system [GCM+16]. The set

of models are generated from a contract-based, parameterized nuXmv model. Each model

86

is checked against 34 safety properties. The entire evaluation consists of 34 model-sets (one

for each property) containing 1,620 models.

3.5.1.2 Selected Benchmarks from HWMCC 2015

We consider a total of 548 benchmark models from the single safety property track [Bie15].

Of the 548, 110 models are solved using our implementation of IC3 within a timeout of 5

minutes. To create a model-set, we generate 200 mutations of each of the 110 benchmarks.

The original model is mutated to only modify the transition system, and not the safety

property implicit in the AIGER file; 1% of the assignments are randomly modified. An

assignment of the form g = g1 ∧ g2 is selected with probability 0.01 and changed to g = 0,

g = 1, g = ¬g1 ∧ g2, g = g1 ∧ ¬g2, g = ¬g1 ∧ ¬g2, g = g1 ∧ g2, g = g1, g = ¬g1, g = g2, or

g = ¬g2, with equal probability. Therefore, the full evaluation consists of 110 model-sets,

each consisting of one property and 200 models.

3.5.1.3 Wheel Braking System (WBS) Models

The benchmark consists of seven real-world models representing possible designs for the

Boeing AIR6110 wheel braking system [BCFP+15]. Each model is checked against ∼250

safety properties. However, the properties checked for each model are not the same. We

evaluate FuseIC3 using this benchmark to measure performance when a model is checked

against several related or similar properties. Each model in the set of seven models is checked

using a timeout of 120 minutes.

3.5.2 Experiment Setup

FuseIC3 is implemented in C++ and uses MathSAT5 [CGSS13] as the underlying SMT

solver. It takes SMV models or AIGER files as input. The IC3 part of FuseIC3 is based

87

Table 3.1: Results for 34 sets of 1,620 models each for NASA Air Traffic Control System.

Algorithm Cumulative
Time (min)

Median Speedup
v/s typ (avg) v/s inc (avg)

Typical IC3 (typ) 2502.70 - -
Incremental IC3 (inc) 2180.57 1.29 (1.3) -
FuseIC3 1683.53 1.75 (5.48) 1.34 (3.67)
FuseIC3 + MO 1352.53 2.23 (6.89) 1.87 (4.47)

on the description in [EMB11] and ic3ia.4 We compare the performance of FuseIC3 with

typical IC3 (typ), and incremental IC3 (inc). The algorithm for incremental IC3 is part of

IBM’s RuleBase model checker [BBDEL96]. We implemented inc based on the description

in [CIM+11] to the best of our understanding. We study the impact of partial model order-

ing (MO) and property grouping (PG) heuristic on the performance of FuseIC3. Locality-

sensitive hashing using minhash signatures is implemented as a preprocessing Python script.

All experiments were performed on Iowa State University’s Condo Cluster comprising of

nodes having two 2.6GHz 8-core Intel E5-2640 processors, 128 GB memory, and running En-

terprise Linux 7.3. Each model-checking run had exclusive access to a node, which guarantees

that no resource conflict with other jobs will occur.

3.5.3 Experimental Results

3.5.3.1 Air Traffic Controller (ATC) Models

Each of the 34 model-sets are checked using a timeout of 720 minutes per algorithm.

The models in a set are checked in random order, and then using the model ordering (MO)

heuristic. We experiment with ten different random orderings and report averaged results.

Table 3.1 gives a summary of the results. FuseIC3 is median 1.75× (average 5.48×) faster

compared to typical IC3, and median 1.34× (average 3.67×) faster compared to incremental
4https://es-static.fbk.eu/people/griggio/ic3ia/

https://es-static.fbk.eu/people/griggio/ic3ia/

88

IC3. On the other hand, incremental IC3 is median 1.29× (average 1.3×) faster than

typical IC3. The model ordering heuristic improves the performance of FuseIC3 making it

median 2.23× (average 6.89×) and 1.87× (4.47×) faster than typical and incremental IC3,

respectively. We use a value of k = 20, 000 with b = 500, and r = 40 for the heuristic. It

takes ∼30 minutes to find a partial order among 1,620 models. The impact of model ordering

is clearly evident: two similar models share the reachable state space, and FuseIC3 is able

to reuse several reachable state clauses.

Figure 3.10a shows time taken by the algorithms on each model-set. FuseIC3 is almost

always faster than typical IC3, and incremental IC3. However, for model-sets (corresponding

to property IDs 4 and 18–22) containing models that trivially satisfy/falsify a property,

typical IC3 is faster; both incremental IC3 and FuseIC3 require a certain overhead in

extracting information from the last checker run. FuseIC3 tries minimizing the time spent

in exploring the common state space between models. In terms of the IC3 algorithm, this

relates to time spent in finding bad states and blocking them at earlier steps (blocking

phase). Figure 3.10b shows time taken by each algorithm in blocking discovered bad states.

FuseIC3 spends considerably less time in the blocking phase compared to typical IC3 and

incremental IC3. Therefore, FuseIC3 is successful in reusing a major part of the already-

discovered state space between different checker runs, a major requirement when checking

large design spaces. Figure 3.10c shows the total number of calls made to the underlying SAT

solver by each algorithm. FuseIC3 makes fewer SAT calls and takes less time to check each

model-set. The model ordering heuristic significantly improves the overall performance of

FuseIC3 as shown in Figure 3.10d. Checking partially ordered models is faster than random

checking for all model-sets, as it enables the FuseIC3 algorithm to reuse more information

between similar models in a group.

89

0 10 20 30 34
Property ID

100

101

102

C
he

ck
in

g
tim

e
(l

og
)

(a) Checking time per set (minutes)

0 10 20 30 34
Property ID

10−2

100

102

B
lo

ck
in

g
tim

e
(l

og
)

(b) Blocking time per set (minutes)

0 10 20 30 34
Property ID

101

102

103

104

#
SA

T
C

al
ls

(l
og

)

(c) Number of SAT calls per set

0 10 20 30 34
Property ID

100

101

102

C
he

ck
in

g
tim

e
(l

og
)

(d) Time with model ordering (minutes)

Figure 3.10: Comparison between IC3 (×), incremental IC3 (+), FuseIC3 (�) and
FuseIC3 with model ordering (�) on NASA Air Traffic Control System models. There
are a total of 34 properties. 1,620 models are checked per property. Every property ID
corresponds to a model-set. A point represents cumulative time taken to check all models
for a property by an algorithm.

90

Table 3.2: Results for 91 of 110 sets of 200 models each for selected HWMCC 2015 bench-
marks.

Algorithm Cumulative
Time (min)

Median Speedup
v/s typ (avg) v/s inc (avg)

Typical IC3 (typ) 1024.60 - -
Incremental IC3 (inc) 1026.30 1.04 (1.07) -
FuseIC3 545.31 1.75 (3.18) 1.72 (2.56)
FuseIC3 + MO 396.65 2.32 (3.96) 2.05 (3.12)

3.5.3.2 Benchmarks from HWMCC 2015

Each of the 110 model-sets are checked using a timeout of 120 minutes per algorithm.

The models in a set are checked in random order, and then using model ordering (MO)

heuristic. 91 of 110 model-sets were solved by all algorithms within the timeout. Incremental

IC3 solved two more model-sets compared to typical IC3, while FuseIC3 solved five more

compared to typical IC3. Table 3.2 gives a summary of results.

Figure 3.11a shows time taken by the algorithms in checking each benchmark model-

set. FuseIC3 is median 1.75× (average 3.18×) faster than typical IC3, and median 1.72×

(average 2.56×) faster than incremental IC3. Significant speedup is achieved when checking

model-sets containing large models with FuseIC3. Performance for model-sets containing

small models is similar for all algorithms. Figure 3.11b shows time spent by each algorithm

in blocking predecessors to bad states. Lastly, Figure 3.11c shows the number of SAT queries

made by the different algorithms.

To estimate performance of FuseIC3 on model-sets with varying degree of overlap among

models, we picked the bobtuint18neg benchmark from HWMCC 2015. 40 model-sets with

varying degrees of mutation, between 0.5% to 20%, of the original model were generated.

Each model-set consists of 100 models each. Each set was checked using a timeout of 300

minutes with typical IC3, and FuseIC3 with model ordering (MO). Model-sets corresponding

91

0 10 20 30 40 50 60 70 80 91
Model ID

10−2

10−1

100

101

102

C
he

ck
in

g
tim

e
(l

og
)

(a) Cumulative checking time per design space (minutes)

0 10 20 30 40 50 60 70 80 91
Model ID

10−3

10−1

101

B
lo

ck
in

g
tim

e
(l

og
)

(b) Cumulative blocking time per design space (minutes)

0 10 20 30 40 50 60 70 80 91
Model ID

100

101

102

103

104

#
SA

T
C

al
ls

(l
og

)

(c) Number of SAT calls per per design space

Figure 3.11: Comparison between IC3 (×), incremental IC3 (+), and FuseIC3 (�) on
91 benchmarks from HWMCC 2015. Each model is converted to a model-set containing
200 models, generated by 1% mutation of the original. Every model ID corresponds to a
model-set. A point represents cumulative time for checking all mutated versions of a model.

92

0 5 10 15 20
Mutation percentage

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e
sp

ee
du

p

Figure 3.12: Relative speedup between checking using FuseIC3 with model ordering versus
typical IC3. 100 models are generated for every mutation percentage between 0.5% to 20%
in steps of 0.5%, and are checked against the same property. The ’red’ line represents a
linear fitting of all the points on the plot.

to higher mutation values (greater than 20%) time out (SAT solvers are tuned for practical

designs and random mutations create SAT instances that don’t always correspond to real

designs [CIM+11]) and are not reported. Figure 3.12 gives a summary of the speedup between

checking using FuseIC3 with MO versus typical IC3. Even at higher mutation percentages,

checking a model-set using FuseIC3 is significantly faster than typical IC3.

3.5.3.3 Wheel Braking System Models

A model in the design space was checked against several properties, differently from the

other benchmarks that checked all models in a set with the same property. Each model

was checked using a timeout of 120 minutes. The properties for each model were checked

in random order, and then using the property grouping (PG) heuristic. Table 3.3 gives a

summary of the results.

Compared to other benchmarks, FuseIC3 achieves a smaller speedup when checking the

WBS models. Although some properties being checked for the models are similar, i.e., the

bad states representing the negation of the property overlap, the order in which they are

93

Table 3.3: Comparison between typical IC3, Incremental IC3, and FuseIC3 for AIR6110
Wheel Braking System (reported time is in minutes).

Model Typical IC3 Incremental IC3 FuseIC3 FuseIC3 + PG
Time Time v/s typ Time v/s typ v/s inc Time v/s typ v/s inc

M1 4.36 5.02 0.87 3.72 1.17 1.35 2.03 2.14 2.47
M2 15.78 16.65 0.95 14.80 1.07 1.13 5.64 2.79 2.95
M3 12.43 13.48 0.92 11.24 1.11 1.20 4.34 2.86 3.10
M4 12.45 13.66 0.91 11.09 1.12 1.23 4.67 2.66 2.92
M5 15.92 17.04 0.93 14.71 1.08 1.16 6.03 2.64 2.82
M6 16.85 17.79 0.95 17.04 0.99 1.04 6.57 2.56 2.70
M7 12.95 13.67 0.95 12.12 1.07 1.13 4.59 2.82 2.97

90.73 97.31 0.95 84.72 1.11 1.20 34.57 2.66 2.92
(total) (total) (median) (total) (median) (median) (total) (median) (median)

checked greatly influences the performance of FuseIC3. In the random ordering used for the

experiment, FuseIC3 is able to reuse frames without any repair (the same model is being

checked), however, it spends a lot of time in blocking predecessors to bad states. Nevertheless,

it is faster than checking all properties on a model using typical IC3. On the other hand,

incremental IC3 is slower compared to typical IC3. It is able to extract the minimal inductive

invariant (invariant finder) instantly, however, suffers from the same problem as FuseIC3.

Incremental IC3, and FuseIC3 will benefit if similar properties are checked in order. Our

property grouping (PG) heuristic conjoins properties that have overlapping cone-of-influence.

The 247 safety properties were distributed in 73 groups, and each group was checking against

a model. The PG heuristic improves model checking performance making FuseIC3 upto

2.86× faster than typical IC3, and upto 3.10× faster than incremental IC3. The boost

in performance is primarily due to the reduced number of model checking runs for groups

compared to checking each property individually.

94

3.6 Summary and Discussion

FuseIC3, a SAT-query efficient algorithm, significantly speeds up model checking of large

design spaces. It extends IC3 to minimize time spent in exploring the state space in common

between related models. FuseIC3 spends less time during the blocking phase (Figure 3.10b

and Figure 3.11b) due to success in reusing several clauses, has to learn fewer new clauses,

and makes fewer SAT queries. The smallest salvageable unit in FuseIC3 is a clause; due

to this granularity, FuseIC3 is able to selectively reuse stored information and is faster

than the state-of-the-art algorithms that rely on reusing a coarser CNF invariant [CIM+11].

FuseIC3 is industrially applicable and scalable as witnessed by its superior performance

on a real-life set of 1,620 NASA air traffic control system models (achieving an average

5.48× speedup), and benchmarks from HWMCC 2015 (achieving an average 3.18× speedup).

Despite spending significant time in learning new clauses for the Boeing wheel braking system

models, FuseIC3 is still faster than the previous best algorithm, typical IC3, when checking

properties in random order; FuseIC3’s performance improves by ordering models in a set,

and checking similar properties together.

Specialized incremental verification algorithms, like FuseIC3, immensely benefit design-

space model checking. The models for the pruned design space generated by the D3 often

have small incremental differences, which allows FuseIC3 to reuse much of the learned in-

formation across model-checking runs. SAT-based model-checking algorithms that learn

reachable-state information as clauses [LDP+18, DLP+19], can be easily extended for incre-

mental verification using the techniques presented in this chapter. The situation becomes

trickier when verifying multiple properties on individual models. For the wheel-braking

system models presented in this chapter, fewer clauses are salvageable due to the random

ordering of the checked properties; even though FuseIC3 with the proposed heuristics im-

proves overall performance, it still spends significant time in learning new clauses (measured

95

by the number of calls to the SAT solver). The grouping approach of properties is useful,

but requires expensive offline computation to find high-affinity properties. For models with

thousands or even millions of properties, as is the case in equivalence checking, the prop-

erty grouping procedure based on locality sensitive hashing is computationally prohibitive.

Moreover, it is often the case that the proof or counterexample for a property only depends

on a small subset of its cone-of-influence. It might be the case that for two properties with

identical cone-of-influence, FuseIC3 learns completely different clauses; these two properties

shouldn’t be in the same group. Property grouping based on the “required” cone-of-influence

of properties therefore may help maximize reuse of information between grouped properties.

However, it is impossible to know the required cone-of-influence subset without consuming

any verification resources. In the next chapter, we continue looking under the covers of a

model checker, and focus our attention to optimizing verification of multiple properties that

enables more efficient reuse of information across properties.

96

CHAPTER 4. MULTI-PROPERTY VERIFICATION

Individual model-checking tasks in design-space exploration using model checking entail

checking a large number of properties on the model. The number of properties to check

may be reduced by finding implicit dependencies (Section 2.3.2). Incremental verification

algorithms can further speedup verification of multiple properties by learning and reusing

model-checking artifacts across runs (Section 3.4.2). Several other verification tasks ranging

from functional property verification to equivalence checking evaluate multiple properties on

a model. Given the prevalence of multi-property verification problems, much research has

mostly focused on optimizing model-checking for single property verification. State-of-the-

art tools typically solve all properties concurrently, or one-at-a-time. They do not optimally

exploit subproblem sharing between properties, leaving an opportunity to save considerable

verification resource via incremental or concurrent verification of properties with nearly iden-

tical cone of influence (COI). The FuseIC3 algorithm presented in Chapter 3 benefits from

verifying similar properties in sequentially. Existing techniques for multiple properties utilize

heuristics to partition properties into high-affinity groups based on a “similarity-measure”

as shown in Figure 4.1. The property groups are then checked independently, and different

groups can be checked in parallel. However, existing techniques to group properties are ei-

ther computationally prohibitive, or require expensive offline analysis. The locality sensitive

hashing technique of Section 3.4 can speed up grouping significantly, but does not scale to

problems with thousands, or even millions of properties as is the case in equivalence checking,

due to the required large number of hashing operations.

A typical verification task should spend majority time in checking properties rather than

finding optimal grouping. Therefore, there is a significant need to develop partitioning algo-

97

Figure 4.1: Typical methodology for verification of multiple properties. Several heuristics
partition properties into high-affinity groups; the individual groups are verified independently
using a model checker, and different groups in parallel to provide results for all properties.

rithms that scale with the number of properties, and take a few milliseconds on problems with

millions of properties. We observe that trading accuracy vs. speed for property grouping

impacts the overall verification workflow. The choice of the similarity metric impacts veri-

fication performance, and influences the design of property-grouping algorithms. Moreover,

a very large property group, although high-affinity, can sometimes be harder to solve than

checking smaller subgroups due to increased problem complexity. In this chapter, we present

a super-fast, near-linear runtime algorithm that trades accuracy vs. speed for partitioning

properties into high-affinity groups. We specifically answer the following questions: 1) How

to efficiently compute a similarity measure for properties based on model representations?

2) What readily available design information can be utilized to measure property similarity?

3) How to efficiently compare properties based the chosen similarity measure and avoiding

pairwise comparisons? 4) How to repartition very large, and hard-to-prove property groups

into smaller subgroups based on semantic information learned during verification?

The rest of this paper is organized as follows: Section 4.1 overview our contributions

to efficiently partition properties into high-affinity groups and utilize semantic information

to repartition very large high-affinity groups, and contrasts with related work. Section 4.2

gives background information, introduces formalisms, and details a linear-time algorithm

to compute cones of influences for multiple properties. We present a linear-time algorithm

98

to partition properties into provably high-affinity groups in Section 4.3. The large and

hard-to-prove property groups may be repartitioned using semantic information learned by

localization abstraction using the algorithms in Section 4.4. A large experimental evaluation

on multiple property benchmarks forms Section 4.5. Section 4.6 concludes the chapter by

addressing avenues for future optimizations and customizations of our algorithms.

4.1 Introduction

From equivalence checking to functional verification to design-space exploration, indus-

trial verification tasks entail checking a large number of properties on the same design. For

example, equivalence checking compares pairwise equality of each design output across two

designs, and entails a distinct property per output. Functional verification checks designs

against a large number of properties ranging from low-level assertions to high-level encom-

passing properties. Design-space exploration via model checking [GCM+16] verifies multiple

properties against competing system designs differing in core capabilities or assumptions.

Each property has a distinct minimal cone of influence (COI), or fan-in logic of the sig-

nals referenced in that property (Figure 4.2a). Verification of a set of properties often entails

exponential complexity with respect to the size of its collective COI. Concurrent verification

of multiple properties may thus be significantly slower than solving these properties one-at-

a-time, in that each property of the group may add unique fan-in logic to the collective COI

(Figure 4.2b). Conversely, sometimes two or more properties share nearly-identical COIs

(Figure 4.2c). Concurrent verification of high-affinity properties may save considerable veri-

fication resource, as the effort expended for one can be directly reused for the others without

significantly slowing the verification of any property within that group (e.g., reusing clauses

within the SAT solves or reachable state-approximations [Bra11, LDP+18], and models ab-

stractions learned using localization [AM04] across properties in a group).

99

P3

P2

P1

(a) Mix

P3

P1

(b) Low

P2

P1

(c) High

Figure 4.2: Cone-of-influence of high- and low- affinity properties.

Despite the prevalence of multi-property testbenches, little research has addressed the

problem of optimal grouping or clustering of properties into high-affinity groups. Selective

past work [CCL+18, CN11b] has experimentally demonstrated that ideal grouping may save

substantial verification resource. However, no scalable online property grouping procedure

has been provided; this potential was illustrated as a proof-of-concept using computationally-

prohibitive offline grouping algorithms with undisclosed runtime. A significant need thus

remains for an effective solution of determining which high-affinity properties should be con-

currently solved. To ensure overall scalability, it is essential that such a property-partitioning

solution be as close to linear runtime as possible with respect to the number of properties,

otherwise the grouping effort itself may severely degrade overall verification resource com-

prising grouping plus subsequent verification of the identified groups.

We present a near-linear runtime, fully-automated algorithm to partition properties into

provably high-affinity groups based on structural COI similarity. COI support information

is maintained as bitvectors [CCQ16], and grouping is performed in three configurable levels

based on: identical COI, strongly-connected components (SCC) in the COI, and Hamming

distance. The properties in each high-affinity group are verified concurrently; each group may

be independently verified in parallel, using arbitrary solver algorithms. We also present an

100

algorithm to semantically refine high-structural-affinity groups in a localization abstraction

framework, offering the first optimized multi-property localization solution, to our knowledge.

Our partitioning requires negligible resources even on the largest problems, while offering

substantial verification speedups as demonstrated by extensive experiments.

4.1.1 Related Work

Much prior work has addressed methods to incrementally reuse information across muliple

properties to accelerate specific algorithms. E.g., incremental SAT across proofs of different

properties [KNPH06, KN12], and reusing verification by-products like invariants [DR17] and

interpolants [MS07b], can accelerate the verification of high-affinity properties.

Methods to group properties based on high-level design descriptions (for e.g., module

hierarchies) extract similarity criteria from high-level information unavailable in low-level

designs and benchmark formats such as AIGs [CM10]. The framework of local and global

proofs [GGKM18] has been used to derive a “debugging set” of properties to fix before

verifying others, implying a property ordering but not a partitioning for minimal collective

resource. LTL satisfiability checking has been used to establish logical dependencies between

properties [DR18] to dynamically reduce verification resource; however, this work requires a

quadratic number of resource-intensive comparisons.

The work most similar to ours is a property-clustering procedure based on COI similar-

ity [CCL+18, CN11b]. While a similar goal, their solution requires a quadratic number of

comparisons between properties, rendering it prohibitively expensive on large testbenches.

Their experiments do not disclose grouping resource, only subsequent verification speedup.

Moreover, this generic clustering approach requires the number of desired groups as an al-

gorithmic parameter. This metric is impossible to predict in practice; it is far superior to

allow affinity analysis to automatically determine the optimal number of groups.

101

4.1.2 Contributions

We present a near-linear runtime algorithm to partition properties into high-affinity

groups based on structural COI similarity. Our contributions are summarized as follows:

1. An online algorithm to partition properties based on structural information, readily

available in low-level design representations, into provably high-affinity groups.

2. Efficient procedure to compute cones of influence of multiple properties, and data

structures that allow CPU-speed comparison between properties.

3. A systematic methodology to learn semantic information, and refine high-structural-

affinity groups in a localization abstraction framework.

4. An optimized multi-property localization abstraction solution that is resistant to per-

formance slowdown that may occur when verifying very-large property groups.

5. Extensive experimental evaluation on large benchmarks derived from varied hardware

verification problems that span functional verification and equivalence checking.1

4.2 Preliminaries

Definition 4.2.1. The logic design under verification is represented as a netlist N , which is

a tuple (〈V,E〉, F) where 〈V,E〉 is a directed graph such that

1. V is a set of vertices representing gates,

2. E ⊆ V × V are edges representing interconnections between gates, and

3. F : V → types is a function that assigns vertices to gate types: constants, primary

inputs, combination logic such as AND gates, and sequential logic such as registers.
1Raw experimental results available at http://temporallogic.org/research/FMCAD19

http://temporallogic.org/research/FMCAD19

102

A state is a valuation to the registers. Each register has two associated gates that represent

its next-state function, and its initial-value function. Semantically, the value of the register

at time “0” equals the value of the initial-value function gate at time “0”, and the value of

the register at time “i+1” equals that of the next-state function gate at time “i”. Certain

gates in the netlist are labeled as properties that are formed through standard synthesis of

the relevant property specification language.

Definition 4.2.2. Given a netlist N = (〈V,E〉, F), a gate vi ∈ V is in the fan-in of gate

vj ∈ V if and only if (vi, vj) ∈ E or there exist gates {v1, v2, . . . , vk} ∈ V , for k ≥ 1, such

that {(vi, v1), (v1, v2), . . . , (vk, vj)} ∈ E.

The fan-in cone of a property gate p refers to the set of all gates in the netlist which may

be reached by traversing the netlist edges backward from the property gate, and is denoted

fanin(p). This fan-in cone of the property gate is called the cone-of-influence (COI) of the

property. The registers and inputs in the COI of the property are called support variables.

The number of support variables in the property’s COI is the COI size.

Definition 4.2.3. A strongly connected component in a netlist N = (〈V,E〉, F) is a set of

gates C ⊆ V such that for every pair of gates vi, vj ∈ C, vi ∈ fanin(vj) and vj ∈ fanin(vi).

Note that a primary input does not belong to any SCC, and in a well-formed SCC every

directed cycle has at least one register gate because a netlist must be free of combinational

cycles. The number of register gates in a SCC is the weight of the SCC.

4.2.1 Cone-of-Influence Computation

Support variable information may be represented as an indexed array of Boolean values,

or bitvector, per property. Figure 4.3 gives a high-level procedure to compute a support

bitvector for a property p. Every support variable in the netlist N is indexed to an unique

103

function support_bitvector (p, N)

Input: p = property gate, N = netlist

1: Bitvector bv # initially set to all zeros

2: for each support variable v ∈ N :

3: unsigned i = index(v) # index of variable’s bit in bv

4: if v ∈ fanin(p) : bv[i] = 1 else bv[i] = 0

5: return bv

Figure 4.3: High-level procedure to compute support variable information for a property.
Every variable is uniquely indexed into the bitvector.

position in the bitvector, and index(v) returns that index for variable v. The function

fanin(p) recursively computes the fan-in structure, or COI, of the gate corresponding to

property p. If a support variable v is in the fan-in of property p, then the index(v)’th bit is

set to “1” in the bitvector; otherwise, the bit is set to “0”. The length of such a bitvector,

denoted length(bv) is equal to the total number of support variables in the netlist, and all

bitvectors have the same length. The COI size of the property is the number of bits set to

“1”, and can be computed using fast population counting algorithms [War12].

The bitvectors can be packed by representing every SCC as a single weighted support

variable; SCC bits have weight equal to the SCC weight, while others have unit-weight. The

COI size of the property equals the weighted sum of the bits set to “1”. Note that the choice

of whether or not to represent SCCs as a single bit does not affect the resulting support size.

Unless stated otherwise, a “support bitvector” is assumed packed.

Practically, it is far too computationally expensive to walk the fan-in cone of every

property independently. Instead, the netlist may be traversed once in a topological manner,

computing intermediate support bitvectors for internal gates [CCQ16]. E.g., for an AND gate

a1 with incoming edges i1 and i2, the intermediate bitvector for a1 is simply the disjunction

104

over the bitvectors for i1 and i2. For more details on support bitvector computation and

optimizations, we refer the reader to [CCQ16].

4.2.2 Property Affinity

The unpacked bitvectors for every property can be analyzed to determine affinity among

the properties. We use “Hamming distance” as an affinity measure; high-affinity properties

have nearly-identical bitvectors. The affinity between two properties p1 and p2 with unpacked

bitvectors bv1 and bv2 is:

0 ≤ affinity(p1, p2) = 1− hamming(bv1, bv2)
length(bv1) ≤ 1.0

where hamming(bv1, bv2) is the Hamming distance between the unpacked bitvectors, and

length(bv1) is the number of support variables in the netlist (identical for every bitvector).

Let V1 and V2 be the set of support variables in the COI of p1 and p2, respectively. Note

that hamming(bv1, bv2) equals (|V1 ∪ V2| − |V1 ∩ V2|) and length(bv1) ≥ |V1 ∪ V2|.

4.2.3 Group Center and Grouping Quality

A property p is selected in a group g that represents the group’s center, or representative

property, and is denoted as g∗. The quality of a group g, denoted Q(g), is the minimum

affinity between any property in g with respect to the center property g∗, i.e.,

Q(g) = min({affinity(pi, g∗) | ∀pi ∈ g})

A quality of t implies that unpacked bitvectors, of length l, for properties in a group have

a maximum Hamming distance of (1 − t) ∗ l. Our grouping algorithms guarantee that the

quality of every group will be greater than a specified threshold.

105

4.2.4 Localization Abstraction

The proof or counterexample for a property often only depends on a small subset of

its COI logic. Localization abstraction [MEB+13, MA03, AM04, CCK+02] is a powerful

method aimed at reducing netlist size by removing irrelevant logic, transforming irrelevant

gates to unconstrained primary input variables via cutpoint insertion. Since cutpoints can

simulate the behavior of the original gates and more, the localized netlist over-approximates

the behavior of the original netlist. Abstraction refinement is used to eliminate cutpoints

which are deemed responsible for any spurious counterexamples, effectively re-introducing

previously-eliminated logic. Ultimately, the abstract netlist is passed to a proof engine. It

is desirable that the abstract netlist be as small as possible to enable more-efficient proofs,

while being immune to spurious counterexamples.

4.3 Structural Grouping of Properties

Practical industrial verification tasks often entail hundreds of thousands of support vari-

ables, and tens of thousands of properties. The need for scalability obviates straight-forward

approaches, such as pairwise-comparing each property to check for affinity. We use support

bitvectors for a set of properties, and partition them into high-affinity property groups. Our

affinity-based algorithm performs grouping in three configurable levels based on: identical

bitvectors (level-1), weights of large SCCs in support (level-2), and Hamming distance be-

tween bitvectors (level-3). The underlying intuition is that properties with similar bitvectors,

measured in terms of a distance metric like Hamming distance, have high structural affinity

and can be most efficiently verified as one concurrent multi-property verification task. To

ensure overall scalability, each level runs in as close to linear runtime as possible with respect

to the number of properties, otherwise the grouping effort itself may severely degrade overall

verification resource comprising grouping plus verification of the identified groups.

106

function structural_grouping (Properties P , Netlist N , Level l, Affinity t)

Input: P = properties to group, N = netlist, l = desired grouping level,

t = affinity threshold

Output: G = high-affinity property groups

1: Groups G = ∅ # initially empty

2: for each Property p ∈ P :

3: Group g = ∅, g.insert(p), G.insert(g) # initially groups contains only one property

4: if l ≥ 1 : # idential COI

5: grouping_level_1 (G, N) # see Figure 4.5

6: if l ≥ 2 : # heavy-weight SCCs in COI

7: grouping_level_2 (G, N , t) # see Figure 4.6

8: if l ≥ 3 : # Hamming distance

9: grouping_level_3 (G, N , t) # see Figure 4.10

10: return G

Figure 4.4: Algorithm to group properties based on structural affinity.

Figure 4.4 shows our leveled structural grouping algorithm for partitioning properties

into high-affinity groups. The algorithm takes as input the properties P , netlist N , and

desired grouping level l. Additionally, an affinity threshold t controls the quality of groups

formed. Each property is initially assigned its own distinct group, i.e., each group contains

only one property. Upon termination, properties in a group are checked concurrently using

a verification algorithm portfolio, and different groups are verified independently.

107

function grouping_level_1 (G, N)

Input: G = property groups, N = netlist

1: Hash_function hfun, Hash_table ht

2: for each Group g ∈ G :

3: Property p = g∗ # center property in group

4: Bitvector bv = support_bitvector (p,N)

5: unsigned val = hfun (bv) # hash the bitvector for fast comparison

check if another group has identical bitvector

6: if Group h = hash_lookup (ht, 〈val, bv〉) :

7: group_merge (g, h) # merge properties in g with h

8: else# store in hash table for later comparison

9: hash_insert (ht, 〈〈val, bv〉, g〉)

Figure 4.5: Algorithm to group properties based on identical COI. Properties for which
bitvectors hash to the same value are grouped together.

4.3.1 Identical Cones of Influence

The procedure to perform property grouping based on identical support bitvectors is

demonstrated in Figure 4.5. The procedure takes an initial property grouping as input, and

then merges groups that have identical support bitvectors. g∗ denotes the representative

property in a group, i.e., g∗ is the center. The choice of g∗ is trivial at level-1 because every

group contains only one property. Next, the support bitvector for the center property in

the group is hashed to an integer value. The choice of the hash function is implementation-

dependent. We use Murmur3 [App] to hash bitvectors as being very fast and accurate

with minimal collisions, however, other functions can also be used. Groups for which the

bitvector hashes to the same integer value, and further which have identical bitvectors, are

108

then merged. Any property in the merged group can be chosen as the new center property

without affecting subsequent results.

Theorem 4.3.1. The level-1 grouping procedure (Figure 4.5) generates high-affinity property

groups G such that ∀g ∈ G : Q(g) = 1.0.

Proof. Initially, every group contains one property, and therefore Q(g) = 1.0. The proce-

dure then merges properties with identical bitvectors, i.e., properties with affinity = 1.0 are

grouped, and therefore the generated groups have Q(g) = 1.0, irrespective of the center.

While scalable (near-linear runtime) and able to group properties with 100% affinity, in

practice it is desirable to perform additional grouping of properties which have a small tol-

erable Hamming distance yet are still high-affinity. Again, we stress that a simple procedure

of pairwise comparison between properties to check whether properties are within a small

tolerance is prohibitively slow in practice, rendering prior techniques as [CCL+18, CN11b]

unusable in practice. The following algorithms solve this goal of high-affinity group merging,

with high scalability and provide guarantees on the grouping quality of generated groups.

4.3.2 Strongly Connected Components

Many practical netlists contain at least one very large SCC, comprising the majority of

its registers. For such netlists, all properties that contain the same heavy-weight SCCs in

their COI can often be grouped together as having high affinity. Figure 4.6 demonstrates

the procedure to perform property grouping based on heavy-weight SCCs. The procedure

takes as input an affinity threshold t. For every group g, we find all SCCs in the COI of the

center property p = g∗, with weight at least w. We use Tarjan’s algorithm to find SCCs in

the COI of property p in linear runtime. Practically, it is very expensive to find SCCs in

the COI of every property independently. Instead, all SCCs are computed once for netlist

N along with the linear traversal to compute support bitvectors for properties [LPP+13].

109

function grouping_level_2 (G, N , t)

Input: G = property groups, N = netlist, t = affinity threshold

1: Trie trie # initially empty

2: Weight w # set heuristically

3: for each Group g ∈ G :

4: Property p = g∗ # center property in group

5: Bitvector bv = support_bitvector (p,N)

6: Set S = find_sccs (p,N,w) # find SCCs with weight ≥ w in COI of property p

7: unsigned scc_weight = cumulative_weight(S)

8: if scc_weight/length(bv) < t : # check if SCCs contain t% of support variables

9: continue # SCCs can’t decide affinity for group g

10: if Group h = trie_lookup (trie, S) : # check if another group has exact same SCCs

11: group_merge (g, h) # merge properties in g with h

12: else trie_insert (trie, 〈S, g〉) # store in trie for later comparison

Figure 4.6: Algorithm to group properties based on heavy-weight SCCs in the COI. Prop-
erties that share the same heavy-weight SCCs are grouped together.

If the cumulative SCC weight is at least t times the number of support variables in netlist

N , this set of SCCs is inserted into a prefix tree or trie (for fast ∼linear time lookup and

prefix matching). A hash table may be used, at the expense of possibly-increased memory

footprint. If the trie already contains this set of SCCs, albeit for another group h, the two

groups are merged. Any property in the merged group can be chosen as the new center

property without affecting subsequent results.

Theorem 4.3.2. Given affinity threshold t, the level-2 grouping procedure (Figure. 4.6)

generates property groups G such that ∀g ∈ G : Q(g) ≥ t.

110

Proof. Initially, Q(g) = 1.0 for all groups g ∈ G. Let n be the number of support variables,

therefore for the center property p = g∗ ∈ g, we have length(bv) = n, where bv represents the

support bitvector for property p (lines 4–5). Let C be the set of SCCs in the cone of influence

of property p. The procedure finds set S ⊆ G such that ∀s ∈ S we have weight(s) ≥ w (line

6). Let cw = Σ∀s∈Sweight(s), i.e., the cumulative number of support variables in S (line 7).

The algorithm then compares cw and n ∗ t. We have two cases:

1. cw < n ∗ t: SCCs in set S contain fewer than t% of the total number of support

variables in the netlist. The SCC’s alone cannot be used for deciding the affinity-

merge of group g and the procedure proceeds to the next group (lines 8–9).

2. cw ≥ n ∗ t: SCCs in set S contain greater than t% of the total number of support

variables in the netlist. The procedure then finds group h ∈ G with S in the COI of

h∗ (trie lookup), merges group g with h, and proceeds to the next group (lines 10–11).

If no such group exists, set S is added to the trie for later comparisons (line 12).

The procedure performs a successful merge of group g and h if their respective center prop-

erties g∗ and h∗, respectively, have identical heavy-weight SCCs (set S) in their COI that

contain at least t% of the variables (cw ≥ n ∗ t). Both g∗ and h∗ have the same ≥ n ∗ t bits

set to “1” in their unpacked support bitvectors, implying a maximum Hamming distance of

(1− t) ∗n or minimum affinity of t. Therefore, level-2 grouping generates groups g ∈ G such

that either Q(g) = 1.0 (unsuccessful merges), or Q(g) ≥ t (successful merges).

Properties sharing a small number of common large SCCs may thus be adequately high-

affinity to group based solely upon analysis of these SCCs, without needing to consider a

potentially very large number of non-SCC support variables or smaller SCCs. In contrast,

storing every full bitvector in a trie may become computationally expensive and serve little

benefit. Since the subsequent level-3 grouping does take non-SCC support variables into

111

account, minimum SCC weight w is typically set to at least 1% of the total number of

support variables in the netlist, and possibly substantially larger like 10%, for fastest runtime

without impacting the overall grouping results.

4.3.3 Hamming Distance

Classical clustering techniques, like k-medoids [PJ09] (O(n2) time complexity) and heirar-

chical clustering based on a distance metric like Hamming distance[RM05] (O(n2logn) time

complexity), are slow and do not scale well with the number of clustered items [AV06]. They

require expensive computation of a distance matrix that maintains the distance between

every pair of items (guaranteed to require at least quadratic resources), and the number of

clusters to generate as an input parameter. In a verification context, it is prohibitively slow

to perform a quadratic number of bitvector comparisons [CCL+18, CN11b] on netlists with

millions of support variables. Plus, it is impossible to a-priori know how many high-affinity

groups are a natural fit for the given multi-property netlist, until the affinity analysis and

grouping are completed. Classical clustering algorithms are thus unsuitable for our goal.

A third component of our grouping procedure is an approximate clustering algorithm

to scalably cluster bitvectors based on Hamming distance. Figure 4.7 demonstrates the

clustering algorithm. The algorithm takes as input a set of unpacked bitvectors BV , word

size n, and an affinity threshold t. As an initialization step, the algorithm first uses an

off-the-shelf clustering algorithm [RM05, Gon85] to cluster all n-bit numbers into k clusters

such that quality of every cluster is at least t̂ = 1 − b(1 − t)∗ne ÷ n (bxe is the nearest

integer function); a map m is maintained that maps every n-bit number (0, 1, . . . , 2n− 1) to

the allotted cluster center (1, . . . , k). For a fixed value of n, the number of clusters k can be

increased one-by-one until quality of each is at least t̂, i.e. the maximum Hamming distance

allowed per n-bit segment in a cluster is (1 − t̂) ∗ n. E.g. for n = 32 and t = 0.95, the

112

function bitvector_cluster (BV , t, n)

Input: BV = set of bitvectors to cluster, t = affinity threshold

n = word size for clustering

initialization step

1: Map m, unsigned k

2: m = generate_map (t, n) # see Figure 4.8

clustering step

3: Hash_function hfun, Hash_table ht

4: Clusters C = ∅ # initially empty

5: for each Bitvector bv in BV :

6: unsigned num = ceil(length(bv)/n) # number of words

7: unsigned mbv[num] # mapped bitvector

8: for i in 0, . . . , num− 1 : # generate mapped bitvector

9: mbv[i] = m[bv[i]]

hash and insert into ht. If 〈val〉 exists as key, add new 〈bv〉 value to this key

10: unsigned val = hfun(mbv), hash_insert_multi(ht, 〈val, bv〉)

11: for each entry 〈〈val〉, bv[]〉 in ht :

12: Cluster c = bv[], C.append(c) # bitvectors with key 〈val〉

13: return C

Figure 4.7: Algorithm to cluster bitvectors based on Hamming distance. The initialization
step may be computed offline and reused across runs.

113

function generate_map (t, n)

Input: t = affinity threshold, n = word size of numbers to cluster

1: Set S = {0, 1, . . . , 2n − 1} # all n-bit numbers

2: unsigned k # number of clusters for items in S

3: Mapm # m stores map of n-bit number → 1, . . . , k

generate clusters s.t. each has quality t̂ = 1− b(1− t)∗ne ÷ n

4: m = cluster (S, t) # increase k to match t̂

5: return m

Figure 4.8: Algorithm to cluster n-bit numbers based on Hamming distance. The procedure
return a function m : n→ c that assigns each n-bit number to a cluster index c. The n-bit
numbers with identical cluster indexes are within a Hamming distance of (1− t̂) ∗ n.

maximum hamming distance is (1 − 0.95) ∗ 32 = 1.6 ≈ 2 for which t̂ = 0.9375. Note that

the initialization step involving clustering does not hinder scalability because:

1. The value of n is typically less than the maximum CPU word size that allows fast

single-cycle Hamming distance computation between two numbers (XOR); clustering

with t = 0.9 for n=16 and 32 takes <1s and <1min, resp.

2. The map can be computed once offline, and reused in all future runs of the algorithm

(e.g. embedded into a verification tool) for various ranges of threshold t.

3. For online computation, an approximate linear-time algorithm, like Gonzalez [Gon85],

can be used on S that may only contain n-bit numbers appearing in bitvectors BV .

In the clustering step, every unpacked bitvector bv is read in n-bit segments to generate

a piecewise-mapped bitvector mbv using map m. Figure 4.9 gives an example to generate

mapped bitvectors from unpacked bitvectors for n = 16. Bitvectors for which the corre-

sponding mapped bitvectors hash to the same value are put in the same cluster.

114

Figure 4.9: Generate mapped bitvector M(V) by mapping 16-bit segments of bitvector
V using a map that assigns all numbers 0, 1, 2, . . . , 216 − 1 to an index between 1, 2, . . . , k.
Bitvectors with identical mapped bitvectors are grouped.

Theorem 4.3.3. Given a set of unpacked bitvectors BV , affinity t, and word size n, the

bitvector_cluster procedure (Figure 4.7) returns cluster set C of bitvectors such that:

1. ∀c ∈ C : c ⊆ BV and |c| > 0, i.e., each cluster is a subset of bitvector BV ,

2. for each bitvector bv ∈ BV and clusters ci, cj ∈ C, if bv ∈ ci and bv ∈ cj, then i = j,

i.e., bitvector bv is present in at most one cluster,

3. ⋃c∈C c = BV , i.e., every bitvector is assigned a cluster, and

4. ∀c ∈ C : Q(c) ≥ t̂, where t̂ = 1− b(1− t)∗ne ÷ n.

Proof. We assume that the procedure generate_map (Figure 4.8) returns a map that assigns

numbers 0, 1, 2, . . . , 2n − 1 to indexes 1, 2, . . . , k, and numbers with identical indexes have

their corresponding n-size bitvectors within a Hamming distance of (1 − t̂) ∗ n, where t̂ =

1−b(1− t)∗ne÷n, implying an affinity of t̂ (line 2). The set of clusters C is initially empty.

The procedure iterates over all unpacked bitvectors bv ∈ BV (lines 5–10). Let num be the

number of full n-bit words (segments) in bitvector bv (line 6), i.e., length(bv) ≤ n∗num and

length(bv) > n ∗ (num− 1). The procedure generates a mapped bitvector mbv by mapping

every n-bit segment to an index between 1, 2, . . . , k (lines 8–9). The mapped bitvector is then

inserted into a hash table for later comparisons (line 10). We assume that the hash function

115

used is collision-free.2 The procedure then iterates over all entries in the hash table (lines

11-12). For the mapped bitvectors that hash to the same value, the corresponding unpacked

bitvectors are collected to form clusters c ∈ C. All other unpacked bitvectors form singleton

clusters. Therefore, every bv ∈ BV is assigned to a cluster c ∈ C. If two mapped bitvectors

hash to the same value, then every ith n-bit segment in the two original unpacked bitvectors

is at a maximum distance of (1− t̂) ∗ n. Therefore, the maximum distance between the two

unpacked bitvectors is (1− t̂) ∗ n ∗ num or (1− t̂) ∗ length(bv), implying a minimum affinity

of t̂. Every cluster c ∈ C is either singleton (implying Q(c) = 1.0) or contains unpacked

bitvectors within a Hamming distance of (1− t̂)∗ length(bv) (implying Q(g) ≥ t, irrespective

of the chosen cluster center).

Figure 4.10 demonstrates the procedure to perform property grouping based on Hamming

distance using the bitvector clustering algorithm of Figure 4.7. The algorithm generates

a map m of n-bit numbers to cluster centers 1, . . . , k as an initialization step. The center

property unpacked bitvector for every group is read per n-bit segment, to generate a mapped

bitvector using map m. The mapped bitvector is hashed to an integer value. The groups

for which the center property mapped bitvectors hash to the same value, and further which

have identical mapped bitvectors, are immediately merged.

Theorem 4.3.4. Given affinity t and word size n, the level-3 grouping procedure (Fig-

ure 4.10) generates property groups G such that ∀g ∈ G : Q(g) ≥ 2 ∗ t + t̂ − 2, where

t̂ = 1− b(1− t)∗ne ÷ n.

Proof. We assume that the procedure generate_map (Figure 4.8) returns a map that assigns

numbers 0, 1, 2, . . . , 2n − 1 to indexes 1, 2, . . . , k (line 2), and the hash function is collision-

free. Initially, G contains singleton groups, level-1 groups, or level-2 groups. The procedure

iterates over every group g ∈ G (lines 4–15). Let bv be the unpacked support bitvector
2A hash function H is collision free if H(x) = H(y) if and only if x = y

116

function grouping_level_3 (G, N , t, n)

Input: G = property groups, N = netlist, t = affinity threshold,

n = word size for clustering

initialization step (can be computed online/offline)

1: Map m, unsigned k

2: m = generate_map (t, n) # see Figure 4.8

clustering step

3: Hash_function hfun, Hash_table ht

4: for each Group g ∈ G :

5: Property p = g∗ # center property in group

6: Bitvector bv = support_bitvector (p,N)

7: unsigned num = dlength(bv)/ne # number of words

8: unsigned mbv[num] # mapped bitvector

9: for i in 0, . . . , num− 1 : # generate mapped bitvector

10: mbv[i] = m[bv[i]]

11: unsigned val = hfun (mbv) # hash the mapped bitvector for fast comparison

check if another group has identical mapped bitvector

12: if Group h = hash_lookup (ht, 〈val,mbv〉) :

13: group_merge (g, h) # merge properties in g with h

14: else# store in hash table for later comparison

15: hash_insert (ht, 〈〈val,mbv〉, g〉)

Figure 4.10: Algorithm to group properties based on Hamming distance. Properties for
which mapped bitvectors hash to the same value are grouped together.

117

for property g∗. The procedure generates a mapped bitvector mbv by mapping every n-

bit segment of bv to an index between 1, 2, . . . , k (7–10). It then checks if there exists

another group h with identical mapped bitvector mbv for h∗ ∈ h (line 12). If no such group

exists, the mapped bitvector for property g∗ is then inserted into a hash table for later

comparisons. If group h exists, then the unpacked bitvectors for g∗ and h∗ are within a

Hamming distance of (1 − t̂) ∗ length(bv) (follows from Theorem 4.3.3). The remainder of

the proof follows from triangle inequality of Hamming distance. Properties within groups

g and h are at a maximum distance of (1 − t) ∗ length(bv) (follows from Theorem 4.3.1

and Theorem 4.3.2) from their respective center properties. Therefore, maximum distance

between a property in g and another property in h is 2∗(1−t)∗length(bv)+(1−t̂)∗length(bv),

or (1− (2 ∗ t+ t̂− 2)) ∗ length(bv), implying a minimum affinity of 2 ∗ t+ t̂− 2. Therefore,

level-3 grouping generates groups g ∈ G such that either Q(g) = 1.0 (for singleton and

level-1 groups), Q(g) ≥ t (for level-2 groups), or Q(g) ≥ 2 ∗ t + t̂ − 2 (for groups generated

by merging singleton, level-1, or level-2 groups).

When t̂ = t, level-3 returns groups with Q(g) ≥ 3 ∗ t− 2. Despite its provable threshold,

there is some asymmetry in this approach, in that two fairly-high-affinity bitvectors which

differ too much in a single segment will not be merged, whereas if the difference was small

per-segment with multiple segments differentiated, they may be merged, albeit respecting

the quality bound. The highly scalable analysis can be repeated if higher precision and

symmetry is desired. This can be done either as-is on the entire netlist under different

permutations or segment-partitioning of bitvector indices (i.e., by varying the starting index

of the first n-bit segment in the bitvector), or on individual (sets of) groups obtained from

the prior run. Since re-running on a subset of properties implies a smaller cone-of-influence,

bitvectors can be compacted for faster runtime to only include support variables in the COI

of any considered property, and this indexing will differ from the prior run over a larger

118

set of properties. Moreover, support variables present in the COI of every property can be

completely projected out of the bitvectors to offer further compaction and speedup.

4.4 Semantic Refinement of Property Groups

It is desirable that the netlist generated by localization abstraction be as small as possi-

ble to enable efficient proofs. Localization cutpoints are property-specific, hence concurrent

localization of properties with disjoint COIs - or even similar COIs - may yield significantly

larger netlists which are less scalable to verify. Our structural property grouping procedure

ensures that only high-affinity properties in a group will be localized concurrently, which

helps ensure smaller multi-property abstractions. Figure 4.11a shows two high-affinity prop-

erties P1 and P2. However, it might be the case that a cutpoint is refined for one property in

a high-affinity group, whereas that refinement may be unnecessary for another property in

the group. As a result, properties in a high-affinity group without localization cutpoints may

have vastly different COI in the localized netlist. Figure 4.11b shows the abstract netlist

for properties P1 and P2 learned using localization abstraction. Therefore, partitioning the

group obtained from Figure 4.4 into high-affinity localized subgroups based upon localiza-

tion decisions can improve overall verification scalability. Figure 4.11c shows the abstract

netlist for properties P1 and P2 that may be utilized to repartition properties P1 and P2

using structural grouping with respect to the abstract netlist.

4.4.1 Abstract Cone-of-Influence Computation

Various techniques have been proposed [MA03, CCK+02, AM04] to guide the abstraction-

refinement process of localization. Most state-of-the-art localization implementations use

SAT-based bounded model checking (BMC) [BCCZ99] to select the localized netlist upon

which an unbounded proof is attempted. In our implementation we run BMC iteratively

119

(a) High-affinity (b) Learned abstraction (c) Abstract affinity

Figure 4.11: Two high-affinity properties with respect to the original netlist can have vastly
different cones of influence with respect to the localized abstract netlist.

until there is no change in the localized netlist. Figure 4.12 shows our localization abstraction

framework that supports high-affinity group partitioning. We start with a localized netlist

only containing property gates. For a given BMC depth k, we iterate over properties in

group g to eliminate all spurious counterexamples of length k. Cutpoints deemed necessary

to refine for a property p are collected (line 12). If a cutpoint is also a support variable, it

is then added to the support bitvector maintained for property p (line 13). The abstraction

is then refined using the collected cutpoints, and BMC is run again at depth k. When all

properties hold for the abstract model at depth k, BMC is run again with depth k+ 1. The

repeated BMC runs add new cutpoints to the support bitvector for every property, which

in turn can be used to partition group g into high-affinity subgroups with respect to the

localized netlist. Various strategies may be used to decide when to terminate BMC: an

upper-bound on BMC depth or runtime can be used. In our framework, we prefer increasing

BMC depth until there is no change in the localized netlist for n consecutive steps (lines

16–17). The value of n can be varied to increase confidence in the abstracted model such

that it is immune to spurious counterexamples.

120

function localization (g, N , n, t)

Input: g = group to partition, N = netlist, n = word size for clustering,

t = affinity threshold

1: Netlist L = initial_abstraction(g) # localized netlist, add gates for every property

2: unsigned k = 0 # bmc depth

3: bool stop = 0 # some properties fail at depth k

4: while not stop : # loop until all properties pass at depth k

5: stop = 1

6: Gates c = {} # cutpoints to refine in L, initially empty

7: for each Property p ∈ g :

8: Result r = run_bmc(L, p, k) # run bmc with depth k

9: if r == unsat : continue # property passes

10: if cex not spurious : report_solved(p, cex), continue # check counterexample

11: stop = 0 # property fails

12: Gates d = cutpoints_to_refine(), c = c ∪ d

13: collect_support_info(p, d) # add to support bitvector

at least one property passes at depth k

14: if not stop : refine_abstraction(L, c), unchanged = 0

15: else unchanged + = 1 # no change in abstraction

check if netlist unchanged for last n bmc steps

16: if unchanged < n : k = k + 1, goto line 3 # increment depth

17: else Groups Ĝ = structural_grouping(g, L, 3, t)

run proof engine for each group in Ĝ with netlist L

Figure 4.12: Localization to partition a group g of high-affinity properties. BMC is run
for increasing depth until there is no change in the localized netlist, after which partitioning
is attempted to split g into subgroups Ĝ.

121

4.4.2 Semantic Partitioning

Once BMC converges, group g is then partitioned into subgroups Ĝ based on support

bitvector information. Note that the problem is analogous to grouping of properties in g

with respect to the localized netlist. Therefore, we use the property grouping procedure of

Figure 4.4 to generate high-affinity property groups for overall scalability.3 The properties

in each subgroup are then passed to a proof engine for verification with respect to each

COI-reduced localized subgroup’s netlist.

4.5 Experimental Analysis

In this section, we report on our extensive experimental analysis with our high-affinity

property grouping algorithm, and semantic group partitioning based on localization on end-

to-end verification scalability. We briefly detail our benchmarks, summarize the setup used

for the experiments, and end with experimental results and a discussion of results.

4.5.1 Benchmarks

4.5.1.1 Benchmarks from HWMCC

We evaluate 48 benchmarks from HWMCC that contain more than 100 safety proper-

ties (Figure 4.13a). These are obtained by simplifying all the benchmarks by standard logic

synthesis (similar to &dc2 in ABC [BM10]) to solve easy properties, and disjunctive decompo-

sition to fragment each OR-gate property into a sub-property of its literals. Each property, or

property group, is solved using a portfolio comprising BMC [BCCZ99], IC3 [Bra11, EMB11],
3Off-the-shelf clustering is more applicable here than on the original netlist if desired, because: (1) the local-

ized netlist and support bitvectors are often immensely smaller than the original netlist; (2) the number of

properties per structural group being localized is often smaller than the number of overall netlist properties.

However, there is no guarantee of either of these points.

122

and localization (LOC) without semantic partitioning. Each can process multiple proper-

ties: IC3 and BMC in a time-sharing manner, and LOC concurrently abstracting a set of

properties which are solved using IC3.

4.5.1.2 Proprietary Benchmarks

Post-silicon observability solutions often leverage monitoring logic instrumented through-

out a hardware design. This debug bus logic monitors a configurable set of internal signals

in real-time, non-intrusively while the chip is functionally running. Debug bus verification

entails a large number of properties (often one per monitor point), within very large design

components - sometimes entire chips [GBS+06]. We evaluate the impact of high-affinity

property grouping on 9 debug bus benchmarks from IBM. The number of properties in each

evaluated benchmark ranges from a few tens to thousands.

4.5.2 Experiment Setup

Our grouping procedure is implemented within Rulebase: Sixthsense Edition[MBP+04].

All experiments were run on Linux machines, with 32GB memory. Time reported is ‘cpu’

time. We refer to different grouping levels as L1, L2, and L3.

4.5.3 Experimental Results

4.5.3.1 Benchmarks from HWMCC

Property Grouping Support bitvector computation is fast, and takes less than five

seconds on the largest benchmark. The ideal threshold is benchmark- and solver-specific.

Given the exponential penalty of grouping lower-affinity properties vs. linear penalty of

splitting higher-affinity properties (offset by parallel solving), we find it best to err to the

latter using a higher affinity t=0.9. L3 is done using 16-bit words and t̂ = 0.875, i.e.,

123

1 10 20 30 40 48
104

900

1800

2653

(a) Property Count

1 10 20 30 40 48

0.1

1

10

Level-1
Level-2

Level-3
Overall

(b) Grouping Time (ms)

1 10 20 30 40 48
0.0

0.5

1.0

Level-1
Level-2

Level-3
Overall

(c) Reduction Ratio

1 10 20 30 40 48
0.950

0.975

1.000

Level-2 Level-3

(d) Grouping Quality

Figure 4.13: Grouping on 48 HWMCC benchmarks with more than 100 properties, and
maximum 50 properties/group. Level-1 grouping quality is 1.0.

124

0.01 0.1 1 10 50
One-by-one (hrs)

0.01

0.1

1

10

50
W

ith
G

ro
up

in
g

(h
rs

)

(a) Single property

0.01 0.1 1 10 50
Multiple (hrs)

0.01

0.1

1

10

50

W
ith

G
ro

up
in

g
(h

rs
)

(b) All properties

Figure 4.14: End-to-end verification with grouping vs. portfolio which (a) checks properties
one-at-a-time, and (b) check all properties together. Points below diagonal are in favor of
verification with grouped properties.

maximum distance of 2 between words (Figure 4.7). Initially each property is assigned to its

own distinct group. The grouping takes less than 10ms for all benchmarks (Figure 4.13b).

The group count reduction ratio for each level with respect to the preceding level, and overall

reduction ratio, i.e., number of groups relative to preceding level, is shown in Figure 4.13c.

L2 merges properties for 13 benchmarks: <0.5 ratio for 8 benchmarks, and is critical to the

performance of L3. Without L1 and L2, not all properties merged by L2 are merged by L3

due to inherent asymmetry, and L3 can merge the same properties as L1, albeit, with small

runtime penalty. Therefore, the leveling order is crucial and gives tighter control on group

affinity. Figure 4.13d shows the minimum quality of all non-singleton groups in a benchmark.

End-to-end Verification We compare the runtime of checking each property one-by-

one vs. checking property groups in Figure 4.14a; verification with structural grouping is up

to 400× (median 4.3×) faster. A fairer comparison of the runtime of checking all properties

together vs. checking property groups is shown in Figure 4.14b; grouped verification is up

125

Table 4.1: Performance evaluation with one-by-one, multiple, and grouped properties

Name #Prop One-by-one Multiple #G Grouped
6s281 105 0.32h 0.22h 84 0.26h
bobsmvhd3 138 4.36h 0.43h 53 0.92h
6s380 149 1.92h 12.54s 12 16.95s
bob12s08 206 13.04h 3.45h 88 6.80h
6s381 1506 18.60h 1.45h 192 4.76h

to 72× (median 3.5×) faster. Table 4.1 shows benchmarks for which checking all properties

together is faster. LOC solves very few properties for these benchmarks, whereas, BMC/IC3

quickly verify all properties together: 145 properties in 6s380 are falsified by BMC in a few

unrollings and remaining proved by LOC, while all properties are proved by LOC or IC3 for

other benchmarks. The benchmarks in Table 4.1 have properties where a large majority are

either all falsified, or proved. The advantage of checking high-affinity groups is outweighed

by the added cost of repeating BMC/IC3 across groups for these benchmarks, which could

be adjusted for using a lower affinity threshold. However, grouping advantage is apparent for

benchmarks in which no single algorithm solves all properties, and properties have different

verification outcomes, i.e., proved or failed with respect to the model.

Localization Abstraction We select 24 benchmarks having at least 50 properties

solved by LOC. Properties not solved by LOC are not considered. Figure 4.15 shows the im-

pact of high and low affinity grouping on the performance of LOC. If high-affinity structural

grouping returns N groups, low-affinity grouping is done by sorting properties by COI size,

and partitioning into equally-sized N groups. Figure 4.15a compares verification of high-

affinity grouped properties and one-by-one checking of each property with LOC; verification

is up to 30× (median 2.9×) faster. On the other hand, low-affinity groups often degrade

LOC performance compared to one-by-one checking. Figure 4.15b compares high and low

126

0.01 0.1 1 10 50
Individual (hrs)

0.01

0.1

1

10

50
H

ig
h-

af
fin

ity
(h

rs
)

(a) Structural Grouping

0.01 0.1 1 10 50
Low Affinity (hrs)

0.01

0.1

1

10

50

H
ig

h
A

ffi
ni

ty
(h

rs
)

(b) Random Grouping

Figure 4.15: Verification performance of (a) high and (b) low affinity grouping on LOC
with respect to checking all properties one-by-one.

affinity group verification with LOC. Five benchmarks have comparable performance due

to grouping of large number of properties into very few groups. Nevertheless, high-affinity

verification is always faster: up to 3.7× (median 2.5×).

Semantic Partitioning LOC generates a localized netlist using BMC for every prop-

erty group which is then checked by a proof engine. If the localization is sufficient, the proof

engine may prove all properties in a single run. Otherwise, it generates a possibly-spurious

counterexample. Table 4.2 shows benchmarks in which some non-singleton groups are proved

by LOC in a single proof-engine run. We perform semantic partitioning on these groups.

‘Total’ shows the #Groups generated by structural grouping for #Props, whereas, ‘Single

Run’ shows the #Groups and #Props solved by one proof engine run after generating a suf-

ficient localized netlist. All groups are solved by LOC one-by-one. As is evident, semantic

partitioning boosts the performance of LOC for hard problems (in bold). However, there is

a marginal slowdown for easy problems due to the overhead of restarting the proof engine

on semantically partitioned subgroups.

127

Table 4.2: Verification performance with semantic partitioning of high-affinity groups

Name
Total Single Run Verification Time

#G #P #G #P Disabled Enabled Speedup
6s384 2 51 1 27 22.65s 36.76s 0.61×
6s344 12 247 3 65 2.04h 0.65h 3.13×
6s405 13 593 3 134 0.28h 0.21h 1.34×
6s410 15 735 4 121 0.18h 0.12h 1.50×
6s110 15 186 5 73 82.13s 81.43s 1.00×
6s391 30 144 9 32 25.61s 43.12s 0.60×
6s332 77 163 16 45 1.21h 0.75h 1.62×

Table 4.3: Performance comparison between high-affinity property grouping and property
grouping based on hierarchical clustering

Name #P
Our Procedure Hierarchical

#Loss
#G G.Time V.Time #G G.Time V.Time

6s405 593 13 2.16ms 1.04h 13 12.43s 1.04h 0
6s381 1506 192 5.93ms 4.76h 76 36.62s 3.01h 96
6s361 2653 84 12.71ms 355.76s 62 107.14s 293.14s 11
6s117* 8063 173 25.53ms 8.13h 165 1.07h 7.45h 4
6s114* 30628 1612 0.42s 0.76h 873 2.65h 0.52h 412

* Not simplified by logic synthesis

Lossy Grouping Lastly, we compare the grouping loss using our procedure with hier-

archical clustering (HC) [RM05]. We measure loss as #properties assigned a group by HC

but not our procedure (maximum 50 properties/group). Table 4.3 summarizes results for

five representative benchmarks. HC always takes more grouping time. There is no loss in

benchmarks for which both methods return very few groups (e.g., 6s405). Verification with

fewer groups from HC is faster (e.g., 6s381) when our procedure has higher loss. This loss

may be due to 1) properties having an almost identical set of SCCs but differing in a few

small SCCs: these are not grouped due to trie prefix mismatch, and 2) asymmetry in L3,

which can be mitigated by using techniques in Sec. 4.3.3. In most cases, HC gives fewer

128

Table 4.4: End-to-end verification speedup on debug bus designs with high-affinity property
grouping

ID #P #G G.Time
(ms)

Verification Time
One-by-one Grouped Speedup

1 36 9 0.48 32.69s 19.27s 1.70×
2 45 3 0.49 26.24s 12.63s 2.08×
3 56 5 0.94 11.9s 6.34s 1.88×
4 76 36 3.87 0.21h 0.14h 1.40×
5 148 4 0.68 95.83s 22.68s 4.23×
6 224 6 0.74 65.52s 19.65s 3.34×
7 1506 53 9.16 0.93h 0.21h 4.32×
8 9371 1027 137.72 52.65h 11.89h 4.43×
9 11035 1238 146.32 7.94h 2.81h 2.82×

groups which may result in less verification time, but HC grouping resource results in an

end-to-end runtime degradation vs. our approach. It is clear that HC gives tighter groups

but overall verification resource is dominated by the time it takes to perform grouping.

4.5.3.2 Proprietary Benchmarks

Post-silicon observability solutions often leverage monitoring logic instrumented through-

out a hardware design. This debug bus logic monitors a configurable set of internal signals

in real-time, non-intrusively while the chip is functionally running. Debug bus verification

entails a large number of properties (often one per monitor point), within very large design

components - sometimes entire chips [GBS+06].

Localization is the dominant method to verify debug bus designs as they often contain

>10M gates [GBS+06]. Note that concurrent verification of all properties is completely

intractable. Table 4.4 summarizes our results. ‘One-by-one’ shows verification time by

localizing one property at a time, whereas, ‘Grouped’ represents concurrent localization of

129

properties in a high-affinity group. All designs benefit from high-affinity group verification,

and the speedup is clearly evident for large designs (in bold) with thousands of properties.

4.6 Summary and Discussion

Scalable property grouping is a hard problem. Existing approaches are either syntax-

based [CM10], or resource intensive [CCL+18]. The need for scalability cannot be over-

stated; traditional grouping algorithms require at least quadratic runtime vs. number of

properties, and are prohibitively slow–adding to and easily outweighing the benefit they

bring to the verification process. We present a 2-step grouping strategy: strucural grouping

followed by semantic partitioning, that offers massive end-to-end verification speedup. Ex-

periments demonstrate the usefulness of our method on several verification tasks: structural

grouping is trivially fast regardless of subsequent verification engines, and semantic parti-

tioning accelerates difficult localization problems. We advance state-of-the-art in localization

by providing an optimal multi-property solution.

An efficient multi-property verification algorithm is key to minimize the effort required

for verifying individual designs in a design space. The high-affinity groups of properties can

be checked by incremental algorithms, like FuseIC3 (Chapter 3), to maximize the amount

of information reused across runs. The different groups can be checked in parallel to max-

imize throughput. The locality sensitive hashing (LSH)technique (Section 3.4.1) to group

properties helps improve end-to-end verification performance, but the offline grouping pro-

cedure itself can be computationally prohibitive on designs with thousands of properties.

The approximate three-level grouping procedure trades accuracy vs. speed, and obviates

the need for pairwise comparisons, or multiple hashes on large documents (Section 3.4.3).

Nevertheless, the LSH-based grouping technique is extremely useful for tasks where exact

affinity computation may be required. Property grouping also impacts the performance

130

of BDD-based model-checking algorithms; concurrent verification of high-affinity properties

leads to smaller BDDs and faster verification closure. While grouped-property verification

helps in reducing CPU-time by concurrently verifying properties, thereby reducing power

consumption, competition for available machines and IT costs, optimizing overall wall-time

for design-space exploration is a comparably-important goal. Parallel verification of groups

helps in this regard, however, existing approaches to verify groups in parallel suffer from

serious limitations. They degrade into highly-redundant work across processes, and fail to

optimally utilize available processes for work distribution. The problem is acute for verifica-

tion tasks with thousands, or even millions of properties, as is often the case in equivalence

checking. In the next chapter, we optimize the property grouping algorithm (Figure 4.4)

for parallel verification. We discuss heuristics that help improve the throughput of parallel

verification tasks, and help organize parallel verification tasks to minimize redundant work

and optimize work distribution across workers in a parallel verification environment.

131

CHAPTER 5. PARALLEL ORCHESTRATION

Multi-property verification combined with efficient incremental verification algorithms is

key for scalable design-space exploration using model checking. Multiple properties can be

partitioned into high-affinity groups using the algorithm presented in Chapter 4. The high-

affinity groups of properties can be checked against the reduced set of models, corresponding

to the pruned design space, by incremental algorithms, like FuseIC3 presented in Chapter

3, to maximize the amount of information reused across runs. The different high-affinity

property groups and individual models can be checked in parallel to maximize through-

put. However, utilizing a parallel verification environment to improve overall verification

performance requires careful considerations.

Verification tools often utilize parallelism in their solving orchestration to improve scal-

ability, either in portfolio mode where different solver strategies run concurrently, or in par-

titioning mode where disjoint property subsets are verified independently. While most tools

focus solely upon reducing end-to-end wall-time, reducing overall CPU-time is a comparably-

important goal influencing power consumption, competition for available machines, and IT

costs. Portfolio approaches often degrade into highly-redundant work across processes, where

similar strategies address properties in nearly-identical order. Partitioning should take prop-

erty affinity into account, atomically verifying high-affinity properties to minimize redun-

dant work of applying identical strategies on individual properties with nearly-identical logic

cones. Existing algorithms for property partitioning are either computationally-prohibitive,

or do not optimally utilize available parallel processes. They may generate fewer groups

than processes, or lose affinity guarantees when requiring number of groups as an algorith-

mic parameter. Therefore, utilizing parallelism to boost verification performance is far from

132

trivial. In this chapter, we extend the property grouping algorithm of Chapter 4 to opti-

mally utilize the number of available parallel workers, and propose heuristics that improve

the performance of parallel verification tasks. We specifically answer the following questions:

1) What are the common problems with parallel verification that limit verification through-

put? 2) How to optimize property grouping without losing affinity guarantees of individual

property groups? 3) How to utilize property grouping efficiently in a verification portfolio to

minimize redundant work across processes, and optimize work distribution?

The rest of the chapter is organized as follow: Section 5.1 overviews our contributions to

efficiently partition properties into high-affinity groups that guarantee complete utilization of

available parallel workers, highlights common performance impediments in parallel verifica-

tion approaches, and contrasts with related work. Section 5.2 gives background information,

introduces formalisms, and reviews structural property grouping from Chapter 4. Section

5.3 describes the property grouping algorithm for parallel verification, and details heuristics

that improve the overall parallel verification performance. We then describe methods to op-

timize localization abstraction for equivalence checking using our techniques in Section 5.4.

Section 5.5 provides a large experimental evaluation of our techniques for parallel verifica-

tion tasks, and details a state-of-the-art localization abstraction portfolio designed using our

techniques. Section 5.6 concludes the chapter by discussing the applicability of the proposed

methods to other common verification scenarios.

5.1 Introduction

Practical hardware and software verification often mandates checking a large number of

properties on a given design. For example, design-space exploration using model checkign

requires evaluating several properties for individual models in the design space. Functional

verification involves checking a suite of low-level assertions and higher-level encompassing

133

properties. Equivalence checking compares pairwise equality of each output across two de-

signs, yielding a distinct property per output. Redundancy removal requires proving many

gate-equalities throughout a design, each comprising a distinct property. The redundancy

removal process is the core procedure of equivalence checking, and is widely-used to boost

verification scalability of functional verification tasks.

State-of-the-art tools verify multiple multiple properties by optimizing problem orches-

tration. We differentiate between three verification orchestration strategies:

1. Atomic verification refers to running a set of single-process verification engines (called

a strategy) on a group of properties.

2. Serial verification refers to beginning one atomic verification task after another atomic

verification task finishes, using only a single process.

3. Parallel verification, or concurrent verification refers to dispatching multiple atomic

tasks on concurrently-running parallel processes.

Each property has a distinct minimal cone of influence (COI), or fan-in logic of the signals

referenced in the property. Verification of a group of properties requires resources propor-

tional to the collective COI size, which is often exponential (after lighter logic reductions).

Each property adds distinct logic to the group’s collective COI; affinity refers to the degree

of common vs. distinct logic in the COI. Atomic verification of a group of low-affinity prop-

erties is thus often significantly slower than solving them one-at-a-time. Conversely, atomic

verification of a high-affinity group saves considerable verification resource, as the effort

expended for one property can benefit the others without significantly slowing them down

[CCL+18, CN11b]. Parallel verification resource can be optimized to leverage these facts

using affinity-based property partitioning [DBI+19], where each parallel process, or worker,

runs the same strategy on a different property group.

134

Figure 5.1: Parallel verification: property partitioning vs. strategy exploration.

An alternate way to accelerate verification is by using a parallel portfolio (strategy ex-

ploration), where the same property group is concurrently verified using a different strat-

egy per worker, as depicted in Figure 5.1. However, portfolio approaches often degrade

into highly-redundant work across processes, where similar algorithms address properties

in nearly-identical order. Existing tools often independently use these modes in different

contexts, particularly strategy exploration first running qualitatively-different strategies in

available workers (e.g., BMC, IC3, interpolation) then padding differently-configured iden-

tical strategies in the remaining processes (e.g., IC3 with different heuristics). The latter

yields increasingly-redundant CPU-time for diminishing gains in wall-time. These modes

need not be mutually-exclusive: a strategy could partition within a worker, and partitioning

could use different strategies for different groups. We explore the mutual optimization be-

tween property partitioning and strategy exploration. We specifically address the following

parallel-verification performance challenges:

• Property partitioning →

P1 Some parallel workers are not utilized if the number of high-affinity property

groups is less than available workers.

135

P2 Some parallel workers finish their tasks and idle (no more property partitions to

dispatch) while others degrade wall-time by solving large or difficult groups, or

may run on relatively slower machines.

• Strategy exploration →

P3 Nearly-identical algorithm strategies verify the same properties concurrently yield-

ing redundant computation; two or more parallel workers would solve the same

property, or property group at nearly the same time.

P4 A parallel worker gets stuck on the first difficult property inhibiting overall progress;

easy properties may go unexplored.

P5 When using a round-robin resource-constrained approach to avoid P4, a parallel

worker fails to solve a difficult property, or property group in the allocated time

even after several repetitions with marginal, or no progress.

We improve multi-property parallel verification with respect to both wall- and CPU-

time. We extend affinity-based partitioning to guarantee complete utilization of available

processes, with provable partition quality. We propose methods to minimize redundant

computation, and dynamically optimize work distribution. We deploy our techniques in a

sequential redundancy removal framework, using localization to solve non-inductive proper-

ties. Our proposed six-process localization portfolio distributes properties to ensure optimum

work distribution. Our techniques offer a median 2.4× speedup yielding 18.1% more property

solves, as demonstrated by extensive experiments on large sequential equivalence checking,

redundancy removal, and functional verification benchmarks.

136

5.1.1 Related Work

Despite the prevalence of parallel verification tools and multi-property testbenches, lit-

tle research has addressed mutual optimization of parallel partitioning and strategy explo-

ration. Furthermore, most approaches optimize wall-time alone without considering CPU-

time, treating additional CPUs as free horsepower to fill with slightly-modified strategies

without attempting to minimize redundant computation.

Methods to group properties based on COI similarity are either computationally-prohibitive

[CCL+18, CN11b, DR18], or do not optimally utilize available parallel processes [DBI+19].

They may generate fewer groups than processes, or lose affinity guarantees when requiring

number of groups as an algorithmic parameter.

Much prior work addresses ways to parallelize specific algorithms in a single-property

context [Bra11, CK16, MGHS17]. Other work incrementally reuses information between

properties to accelerate specific algorithms [KNPH06, KN12, DR17, MS07b]. These are

complementary to our work, and can be used as strategies therein.

Much complementary research work has addressed sequential redundancy removal, us-

ing scalability-boosting strategies including induction [van98, BC00, MBPK05], simulation

[DMJO18, MBMB09], and synergistic transformation and verification algorithms [BMP+06,

MBMB09]. The benefit of parallelizing inductively-provable redundancies has been noted in

[MCBJ08, PMRR19], though little work addresses parallelizing non-inductive redundancies.

Localization is a powerful scalability boost to redundancy removal [MBPK05, MBMB09,

BEM12] and property checking [MEB+13, MA03, AM04, CCK+02]. Prior work is focused

mostly upon single-property single-process contexts [MEB+13, MA03, AM04, CCK+02], or

solely upon parallel property partitioning [DBI+19]. This work is complementary to ours:

we extend state-of-the-art solutions for both, to mutually-optimized parallel verification.

137

5.1.2 Contributions

We optimize parallel verification of multiple properties using complementary property

partitioning and strategy exploration, in terms of both wall- and CPU-time.

1. We present a scalable property partitioning algorithm, extending [DBI+19] to guarantee

complete utilization of available processes with provable partition quality.

2. We propose parallel scheduling improvements, such as resource-constrained irredun-

dant group iteration, incremental repetition, and group decomposition to dynamically

cope with more-difficult groups or slower workers.

3. We address irredundant strategy exploration of a localization portfolio in a sequential

redundancy removal framework, which we have found to be the most-scalable strategy

to prove non-inductive redundancies.

4. We propose improvements to semantic group partitioning within localization. To our

knowledge, this is the first published approach to mutually-optimize property partition-

ing and strategy exploration within a multi-property localization abstraction portfolio.

5. Extensive evaluation on large benchmarks derived from hardware verification problems

that span functional verification and equivalence checking.1

5.2 Preliminaries

Definition 5.2.1. The logic design under verification is represented as a netlist N , which is

a tuple (〈V,E〉, F) where 〈V,E〉 is a directed graph such that

1. V is a set of vertices representing gates,
1Raw experimental results available at http://temporallogic.org/research/FMCAD20

http://temporallogic.org/research/FMCAD20

138

2. E ⊆ V × V are edges representing interconnections between gates, and

3. F : V → types is a function that assigns vertices to gate types: constants, primary

inputs, combination logic such as AND gates, and sequential logic such as registers.

A state is a valuation to the registers. Each register has two associated gates that represent

its next-state function, and its initial-value function. Semantically, the value of the register

at time “0” equals the value of the initial-value function gate at time “0”, and the value of

the register at time “i+1” equals that of the next-state function gate at time “i”. Certain

gates in the netlist are labeled as properties that are formed through standard synthesis of

the relevant property specification language.

Definition 5.2.2. Given a netlist N = (〈V,E〉, F), a gate vi ∈ V is in the fan-in of gate

vj ∈ V if and only if (vi, vj) ∈ E or there exist gates {v1, v2, . . . , vk} ∈ V , for k ≥ 1, such

that {(vi, v1), (v1, v2), . . . , (vk, vj)} ∈ E.

Definition 5.2.3. Given a netlist N = (〈V,E〉, F), a gate vi ∈ V is in the fan-out of gate

vj ∈ V if and only if (vj, vi) ∈ E or there exist gates {v1, v2, . . . , vk} ∈ V , for k ≥ 1, such

that {(vj, v1), (v1, v2), . . . , (vk, vi)} ∈ E.

The fan-in cone of a property gate p refers to the set of all gates in the netlist which may

be reached by traversing the netlist edges backward from the property gate, and is denoted

fanin(p). Similarly, the fan-out of gate u is the set of gates which may be reached by

traversing edges forward from u. The fan-in cone of the property gate is called the cone-of-

influence (COI) of the property. The registers and inputs in the COI of the property are

called support variables. The number of support variables in the property’s COI is the COI

size. A merge of gate u onto gate v consists of moving the output edges of u onto v, then

eliminating u from the netlist by treating u as a rename for v.

139

Definition 5.2.4. A strongly connected component in a netlist N = (〈V,E〉, F) is a set of

gates C ⊆ V such that for every pair of gates vi, vj ∈ C, vi ∈ fanin(vj) and vj ∈ fanin(vi).

Note that a primary input does not belong to any SCC, and in a well-formed SCC every

directed cycle has at least one register gate because a netlist must be free of combinational

cycles. The number of register gates in a SCC is the weight of the SCC.

5.2.1 Affinity Analysis

Property grouping algorithms represent support variable information as a Boolean bitvec-

tor per property [CCQ16]. Every support variable in the netlist is indexed to a unique

position in the bitvector, set to “1” if and only if the support variable is in the COI of the

property. The length of such a bitvector is equal to the total number of support variables

in the netlist, and all bitvectors have the same length. The COI size of the property is the

number of bits set to “1”. These bitvectors may be compared to determine relative property

affinity. Properties p1, p2 with bitvectors bv1, bv2 respectively have

0 ≤ affinity(p1, p2) = 1− hamming(bv1, bv2)
length(bv1) ≤ 1.0

where hamming(bv1, bv2) is the Hamming distance between bv1 and bv2, and length(bv1) is

the number of support variables in the netlist [DBI+19]. The distance between p1, p2 equals

the Hamming distance between their bitvectors, i.e., dist(p1, p2) = hamming(bv1, bv2). A

group g is a set of properties, with a single property g∗ therein representing its center. The

quality Q(g) of a group is the minimum affinity between any property in g vs. its center g∗:

Q(g) = min({affinity(p, g∗) | ∀p ∈ g})

It is desirable that efficient property partitioning algorithms guarantee group quality to be

greater than a specifiable threshold.

140

function structural_grouping (P , N , l,t)

Input: P = set of properties, N = netlist, l = desired grouping level,

t = affinity threshold

Output: G = high-affinity property groups

1: Groups G = P # each property in singleton group

2: if l ≥ 1 : grouping_level_1 (G, N) # identical COI

3: if l ≥ 2 : grouping_level_2 (G, N , t) # large SCCs in COI

4: if l ≥ 3 : grouping_level_3 (G, N , t) # Hamming distance

5: return G # return high-affinity groups

Figure 5.2: Algorithm to group properties based on structural affinity [DBI+19].

5.2.2 High-Affinity Property Grouping

Three-leveled grouping procedure of Chapter 4 [DBI+19] (reproduced in Figure 5.2) uti-

lizes support bitvectors of properties to generate high-affinity groups. The algorithm takes

the desired grouping level (l) and affinity threshold (t). It groups properties based upon:

a) Level-1 : identical bitvectors (identical support variables); b) Level-2 : common large SCCs

(containing t% netlist support variables) in the COI; and c) Level-3 : small Hamming distance

between support bitvectors, scalably identified by equivalence-classing mapped bitvectors us-

ing threshold-aware mapping functions. Higher grouping levels yield progressively fewer but

larger high-affinity property groups.

Straightforward grouping approaches such as pairwise comparison are computationally

prohibitive [CCQ16], requiring at least quadratic resource with respect to number of prop-

erties. Despite being conceptually a quadratic-resource algorithm, bitvector equivalence-

classing [DBI+19] consumes near-linear runtime and memory in practice, enabling scalable

141

online partitioning with provable quality bounds [DBI+19]. Bitvectors are computed during

a linear sweep of the netlist, and have size proportional to the number of SCCs plus non-SCC

support variables. SCC computation has linear runtime [Tar72]. With efficient implementa-

tion, this entire process consumes a few seconds on netlists with millions of support variables

and properties: e.g. computing bitvectors in topological netlist order, and garbage-collecting

bitvectors as soon as all fan-out references have been processed [CCQ16].

A priori knowledge of solvers may dictate the ideal grouping level. For example, BDD-

based reachability is highly sensitive to COI size, and thus may prefer level=1. BMC may

prefer level=3 with lower affinity. Localization may prefer level=1, =2, or =3 depending

on subsequent solvers. In many contexts, the caller can set level=3 and allow Figure 5.2 to

determine group count and size, especially when using the techniques of Section 5.3.2 and

Section 5.4.3 to decompose difficult groups. The structural grouping procedure of Figure 5.2

generates groups with provable affinity bounds.

Theorem 5.2.1 ([DBI+19]). The level-1 grouping procedure (Figure 4.5) generates high-

affinity property groups G such that ∀g ∈ G : Q(g) = 1.0.

Theorem 5.2.2 ([DBI+19]). Given affinity threshold t, the level-2 grouping procedure (Fig-

ure. 4.6) generates property groups G such that ∀g ∈ G : Q(g) ≥ t.

Theorem 5.2.3 ([DBI+19]). Given affinity t and word size n, the level-3 grouping procedure

(Figure 4.10) generates property groups G such that ∀g ∈ G : Q(g) ≥ 2 ∗ t + t̂ − 2, where

t̂ = 1− b(1− t)∗ne ÷ n. For t̂ = t, we have Q(g) = 3 ∗ t− 2.

Note that desired number of property groups is not an algorithmic parameter; affinity anal-

ysis determines the optimal number of groups respecting configurable quality bounds. For

more details on leveled grouping, we refer the reader to Chapter 4 [DBI+19].

142

5.3 Grouping for Parallel Verification

Many organizations have large clusters of computers for load-balancing of tasks such as

verification. The maximum number of available workers for a given task (n) is often known,

e.g. the maximum number of organizational job submissions allowed per user, minus how

many that user wishes to reserve for other tasks. Existing scalable grouping algorithms

[DBI+19] may generate fewer high-affinity groups than n (P1). While partitioning a high-

affinity group may yield redundant CPU-time (similar effort expended on nearly-identical

COIs), it may benefit wall-time due to disparate difficulty of properties therein: e.g. one may

be inductive, and another require deep sequential analysis. Traditional clustering algorithms

can be configured to produce ≥ n groups, though are computationally prohibitive for online

use and may not yield affinity guarantees if n does not align with the given netlist.

5.3.1 Property Grouping Algorithm

Figure 5.5 shows our extension to leveled grouping [DBI+19] (Figure 5.2), guaranteeing

generation of at least min(n, |P |) provable-affinity groups. Each property is returned as a

singleton if there are fewer than n properties. Otherwise, grouping is performed in three

levels that iteratively generate fewer, larger groups. Later levels are skipped if the number of

generated groups becomes less than n at any level. The algorithm then rebalances as needed

by fine-grained affinity analysis: subdividing large or lower-affinity groups to generate at

least min(n, |P |) property groups. The general grouping for parallel verification algorithmic

flow is shown in Figure 5.3. As discussed in Section 5.3.2, this procedure is beneficial even

after initial partitioning to subdivide a difficult group into provably high-affinity subgroups.

The rebalancing algorithm is shown in Figure 5.6. Figure 5.4 shows the high-level algo-

rithmic flow for rebalancing high-affinity property groups. It subdivides groups based on the

grouping level lc that generated fewer groups than n. For level-1, quality is already 100%

143

Figure 5.3: General algorithmic flow for property grouping

Figure 5.4: General algorithmic flow for rebalancing high-affinity groups

144

function structural_grouping_parallel (P , N , l, t, n)

Input: P = set of properties, N = netlist, l = desired grouping level,

t = affinity threshold, n = number of parallel workers

1: Level lc = 0 # current grouping level

2: Groups G = singletons(P) # initialize to singleton groups

3: if |G| ≤ n : return G # fewer properties than workers

4: if l ≥ 1 : grouping_level_1 (G, N), lc = 1 # identical COI

5: if l ≥ 2 and |G| ≥ n : # else fewer groups than workers

6: grouping_level_2 (G, N , t), lc = 2 # large SCCs in COI

7: if l ≥ 3 and |G| ≥ n : # else fewer groups than workers

8: grouping_level_3 (G, N , t), lc = 3 # Hamming distance

9: if |G| < n : # fewer groups than available workers

10: rebalance (G, N , lc, t, n) # distribute groups, see Figure 5.6

11: assert (|G| ≥ n) # guaranteed to hold

12: return G # return high-affinity groups

Figure 5.5: Property grouping guaranteed to generate at least min(n, |P |) high-affinity
groups for n parallel workers.

145

function rebalance (G, N , lc, t, n)

Input: G = property groups, N = netlist, lc = highest grouping level,

t = affinity threshold, n = number of parallel workers

1: if lc == 1 : # divide large level-1 groups in half

2: halve_groups (G, n) # see Figure 5.7

3: else# rollback minimal-quality level-2 & level-3 groups

4: rollback_groups (G, N , lc, t, n) # see Figure 5.8

Figure 5.6: Algorithm to subdivide high-affinity groups for n workers.

so division is based on number of properties in the group (Figure 5.7). Groups with the

most properties are halved until at least min(n, |P |) groups are generated. Finer-grained

analysis may be integrated if desired, e.g. considering affinity of combinational gates in the

combinational fan-in of these properties. Group rollback for higher levels is more intricate

(Figure 5.8), with the goal of improving group quality. A group with minimal quality is

conservatively subdivided until at least min(n, |P |) groups are generated. A minimal-quality

group is split to yield smaller, higher-quality subgroups (Figure 5.9). This process has neg-

ligible runtime, reuses precomputed support bitvectors and requires only a few milliseconds

on the largest netlists with thousands of properties.

The rebalancing procedure generates groups with quality bounds per Theorems 5.2.1,

5.2.2 and 5.2.3. Note that arbitrarily subdividing level-2,-3 groups without careful affinity

consideration might violate affinity thresholds, because the quality of group g is measured

with respect to its center property g∗. Assume that we generate subgroups g0 and g1 from

g. If g∗ is in g0, we trivially have Q(g∗0) ≥ Q(g∗) for any properties subgrouped with g∗.

However, no such claim can be made about g1; its properties might have been nearer to g∗

than to each other. It is thus desirable to subdivide the most-distant property g∗1 from g∗

146

function halve_groups (G, n)

Input: G = property groups, n = number of parallel workers

1: while |G| < n :

2: Group g = pick largest non-singleton group from G

3: G = (G \ g) ∪ halve_group (g) # see below

function halve_group (g)

Input: g = property group

1: return {first half of g, second half of g} # split in half

Figure 5.7: Algorithm for subdividing large level-1 groups in half.

to improve vs. risk degrading the resulting quality of both subgroups. Moreover, simply

rolling back a higher level group to lower-level subgroups risks generating more groups than

necessary, e.g., one level-2 group rolled back to ten level-1 groups. The algorithm in Figure

5.5 generates a minimal number |G| of high-affinity groups with provable affinity bounds,

where |G| ≥ min(n, |P |).

Theorem 5.3.1. Given a group g, the rollback_group procedure subdivides g into two disjoint

subgroups g0 and g1 such that Q(g0) ≥ Q(g) and Q(g1) ≥ Q(g).

Proof. The algorithm returns two 100% affinity groups when properties in g generate at most

two level-1 subgroups. Otherwise, the greatest-Hamming-distance property g∗1 ∈ g from g’s

center property g∗ is identified. Subgroup g0 inherits g∗ as its center, and g1 inherits g∗1 as

its center. Remaining properties in g are added to g0 vs. g1 to minimize distance from g∗0

vs. g∗1, ensuring provable quality bounds.

147

function rollback_groups (G, N , lc, t, n)

Input: G = property groups, N = netlist, lc = highest grouping level,

t = affinity threshold, n = number of parallel workers

1: while |G| < n :

2: Group g = pick minimal-quality non-singleton group from G

3: G = (G \ g) ∪ rollback_group (g, N , lc, t) # see below

function rollback_group(g, N , lc, t)

Input: g = property group to rollback, N = netlist, lc = highest grouping level,

t = affinity threshold,

1: Groups G = singletons(g) # split g to singletons

2: grouping_level_1 (G, N) # level-1

3: if |G| == 1 : G = halve_group (g ∈ G) return G # |G| == 2

4: else if |G| == 2 : return G # g had two 100% quality subgroups

5: rollback_group_level (G, N , t, 2) # level-2, see Figure 5.9

6: if |G| == 2 : return G

7: if lc == 3 : rollback_group_level (G, N , t, 3) # level-3, see Figure 5.9

8: return G # |G| == 2

Figure 5.8: Algorithm for subdividing minimal-quality groups.

148

function rollback_group_level (Groups G, Netlist N , Affinity t, Level l)

Input: G = singleton property groups, N = netlist, t = affinity threshold,

l = grouping level,

1: Groups Gc = G # local copy of G

2: Group g0, g1 = ∅ # temporary groups, initially empty

3: if l == 2 : grouping_level_2 (Gc, N , t) # level-2

4: else : grouping_level_3 (Gc, N , t) # level-3

5: if |Gc| == 1 : # Gc is one group containing all properties in G

6: g0 = g ∈ G containing center property g∗c

7: # extract most-distant property into distinct subgroup

8: g1 = g ∈ G s.t. dist(g∗0, g∗) == max({dist(g∗0, g∗i) | ∀gi ∈ G})

9: for each group g ∈ G : # merge groups to minimize distance

10: if dist(g∗0, g∗) ≤ dist(g∗1, g∗) : add properties in g to g0

11: else : add properties in g to g1

12: G = {g0, g1} # note Q(g0), Q(g1) ≥ Q(gc), see Theorem 5.3.1

13: else : G = Gc # |G| ≥ 2

Figure 5.9: Algorithm to subdivide minimum-quality non-singleton group by rolling back
to at least two lower level subgroups.

149

Corollary 5.3.1.1. Given affinity t and grouping level l, the grouping for parallel verification

procedure (Figure 5.5) generates groups G such that ∀g ∈ G: a) Q(g) = 1.0 if l = 1,

b) Q(g) ≥ t if l = 2, and c) Q(g) ≥ 3 ∗ t− 2 if l = 3.

Proof. The proof follows per Theorem 5.2.1, Theorem 5.2.2 and Theorem 5.2.3 when no

rebalancing occurs. Otherwise, rebalancing divides group g in to smaller groups based on:

(i) l = 1, level-1 subgroups are generated and Q(g) = 1.0 per Theorem 5.2.1; (ii) l = 2,

levels-1 or 2 subgroups are generated and Q(g) ≥ t per Theorem 5.2.2 and Theorem 5.3.1;

and (iii) l = 3, levels-1, 2 or 3 subgroups are generated and Q(g) ≥ 3 ∗ t − 2 per Theorem

5.2.3 and Theorem 5.3.1.

Theorem 5.3.2. Given groups G over a set of properties P , and workers n with |G| < n

and |P | ≥ n, rebalancing generates property groups G′ such that |G′| = n.

Proof. Both the halve_group and rollback_group procedures subdivide a non-singleton group

g into exactly two subgroups, and iterate until |G′| ≥ n. Therefore, the number of groups

increases by exactly one in every iteration, unless all groups become singleton which cannot

happen until |G′| = |P | ≥ n.

Corollary 5.3.2.1. Given a set of properties P and n workers, the grouping for parallel

verification procedure (Figure 5.5) generates groups G from P such that |G| ≥ min(n, |P |).

Proof. The proof trivially holds when ≥n groups or |P | ≤ n singletons are generated without

rebalancing. Otherwise, the proof holds per Theorem 5.3.2 when rebalancing occurs.

5.3.2 Group Distribution Heuristics

We propose three heuristics to optimally utilize parallel workers, used on-the-fly by a

manager routine that dispatches property groups and dynamically adjusts dispatch ordering

based upon feedback from parallel workers. When partitioning is supported by an engine

150

within a strategy (e.g. a localization engine [DBI+19]), there might be multiple managers

partitioning an identical or overlapping set of properties. It is sometimes beneficial to use a

hierarchy of managers: the root might use lower-affinity partitioning onto parallel strategies,

with higher-affinity partitioning within a strategy.

5.3.2.1 Iteration order (I)

Figure 5.5 orders groups deterministically, and thus distributed managers within a strat-

egy will likely verify common properties in the same order. This results in redundant CPU-

time, where two or more strategies may solve the same property at nearly the same time

(P3). The root manager could instead dispatch disjoint properties to different workers,

though there are motivations for building intelligence into distributed managers working on

the entire property set, such as enabling incrementality and data sharing across properties

[KNPH06, KN12, DR17, MS07b]. To minimize redundant work, the manager may be aug-

mented with options to iterate common groups in different orders: 1) smallest to largest COI

(forward); 2) largest to smallest COI (backward); and 3) random to heuristically minimize

concurrent solving of the same group while more groups than workers remain unsolved. If all

properties are of comparable difficulty, running two identical strategies with opposite group

ordering effectively halves wall-time with almost no redundant CPU-time. This approach

can yield superlinear irredundant speedup when different strategies are tailored for easier vs

more-difficult properties: a lighter strategy can iterate forward heuristically addressing eas-

ier properties first (the heavier strategy worker would be slower for these), while the heavier

strategy can iterate backward addressing more-difficult properties first (the lighter strategy

worker might be unable to solve these).

151

function get_next_group (Groups G, Netlist N , Level lc, Affinity t)

Input: G = property groups N = netlist, lc = highest grouping level, t = affinity threshold

Output: g = unsolved property group

1: Group g = pick unsolved or inactive group from G

2: if g == null : return null # all group are solved or active

3: if unsolved(g) and inactive(g) : return g # dispatch group

4: if unsolved(g) : # decompose (new groups are unsolved and inactive)

5: if lc == 1 : G = (G \ g) ∪ halve_group(g) # see Figure 5.7

6: else G = (G \ g) ∪ rollback_group(g,N, lc, t) # see Figure 5.8

7: else remove g from G # group is already solved

8: goto 1 # pick next group to dispatch

Figure 5.10: Manager routine to dispatch unsolved groups using decomposition.

5.3.2.2 Controlled repetition (R)

Each worker solves groups one-at-a-time. Encountering a difficult group inhibits overall

progress (P4). Easier groups might follow, which when solved might speed-up incremental

verification of the previous difficult group. Furthermore, solving easy properties sooner ben-

efits other workers, allowing them to focus on fewer difficult groups. It is thus beneficial to

impose time-limits per group within certain fast strategies. The manager must be capable

of pruning already-solved properties (possibly solved by different workers), and repeating

groups up to a configurable maximum allowed repetitions (to reduce redundant CPU-time).

It may be beneficial to increase resource limits between repetitions, possibly after n repeti-

tions with no progress. Engine incrementality is fairly important when imposing time-limits

and repetition, to minimize redundant CPU-time.

152

5.3.2.3 Decomposition (D)

Some groups are more difficult than others, either because they are large (e.g., many

properties), or because individual properties therein are more difficult (e.g., having a very-

deep counterexample). Some workers might be slower than others, possibly due to varying

machine load. A common wall-time degradation occurs when fewer difficult groups than

workers remain, and previously-active workers become idle (P2). This heuristic decomposes

unsolved groups and dispatches them to idle workers, to accelerate convergence despite im-

posing some redundant CPU-time. Rather than redundantly dispatching an entire unsolved

group, this heuristic utilizes the algorithms of Figure 5.7 and Figure 5.8 to subdivide un-

solved groups to smaller and higher-affinity groups, eventually becoming singletons. Smaller

groups are easier for idle workers to redundantly solve (P5), benefiting but not preempting

active workers (which might be on the verge of solves). The corresponding manager with

decomposition is shown in Figure 5.10. A group is inactive when no worker is currently

verifying it. Solved properties and groups are discarded; groups with unsolved properties are

subdivided and redundantly dispatched. Singleton groups are not redundantly dispatched,

being inactive after the first dispatch.

5.4 Localization for Redundancy Removal

Industrial hardware designs are often rife with redundancy, e.g. to boost the performance

of semiconductor devices, and to implement features such as error resilience, security, initial-

ization logic and post-silicon observability. Verification testbenches yield additional netlist

redundancies, due to input constraints restricting the set of stimulus applied to the design,

and due to redundancies arising between the design and synthesized properties. Equiva-

lence checking can be viewed as verifying a composite netlist comprising two designs as per

Figure 5.11. Sequential redundancy removal [van98, BC00, MBPK05, BMP+06, MBMB09,

153

Figure 5.11: Sequential equivalence checking uses redundancy removal to eliminate gate-
equivalences between two logic designs. Each speculated gate-equality requires verifying a
property called a miter (depicted as green box =?).

MCBJ08, CBMK11] (Figure 5.12) is the process of proving that equivalence-classes of gates

evaluate to equal or opposite values in all reachable states; each speculated redundancy en-

tails solving a property called a miter. When a miter is proven, the corresponding redundant

gates can be merged. This COI reduction is highly beneficial to verification scalability, and

is the core procedure of sequential equivalence checking (SEC).

Various heuristics control the scope of equivalence-class candidates affecting runtime vs.

reduction (Figure 5.12 Step 1): e.g. whether to consider only registers vs. all gate types;

whether to prune classes to reflect corresponded signal names or require per-class candidates

spanning both designs in an equivalence-checking context (Figure 5.11) [BEM12, MBPK05].

A speculatively-reduced netlist (Steps 2-3) accelerates verification of the miters. Techniques

such as BMC and guided simulation are typically used to falsify miters; then induction

proves the easier miters; and finally multi-engine strategies prove the difficult miters or find

difficult counterexamples (Steps 4,5). Failed proofs (falsified miters or inconclusive results)

cause a refinement of the equivalence classes to separate unproven miters’ gates, then another

expensive proof iteration is performed. Our goal is to minimize inconclusive proofs to achieve

maximum netlist reduction with minimal wall- and CPU -time, using a parallel localization

154

function redundancy_removal (N)

Input: N = netlist

1: Guess the redundancy candidates - sets of equivalence classes of gates in N , where gate u

in class Q(u) is suspected equivalent to every other gate v in the same equivalence class.

2: Select a representative gate R(Q(u)) from each class Q(u).

3: Construct the speculatively-reduced netlist by replacing source gate u of every edge

(u, v) ∈ E by R(Q(u)). Additionally, for each gate v, add a miter property asserted

when v 6≡ R(q(v)).

4: Attempt to prove that each miter is unassertable.

5: If a miter cannot be proven unassertable, refine the equivalence classes to separate the

corresponding gates, and goto Step 2.

6: For all unassertable miters, merge the corresponding gates onto the representative to

eliminate redundancy.

Figure 5.12: Generic sequential redundancy removal framework [MBMB09].

portfolio. Note that even if a testbench has only a single property, redundancy removal will

often create thousands of miters. The large number of miters often tremendously benefit

from parallel processing, as noted for combinational redundancy removal [PMRR19] and

induction [MCBJ08]. These miters are distributed throughout the netlist, making affinity

partitioning particularly beneficial. Since practical netlists comprise a diversity of logic,

different miters benefit from different strategies.

The proof or counterexample of a property often only depends on a small subset of

logic in its COI. Localization [MEB+13, MA03, AM04, CCK+02] is a powerful abstraction

method to reduce COI size by replacing irrelevant gates by cutpoints or unconstrained pri-

mary inputs. Since cutpoints can simulate the behavior of the original gates and more,

the abstracted netlist over-approximates the behavior of the original netlist: abstract proofs

155

imply original proofs, but abstract counterexamples might be spurious. Abstraction refine-

ment eliminates cutpoints deemed responsible for spurious counterexamples, re-introducing

previously-eliminated logic. It is desirable that the abstract netlist be as small as possible

to enable scalable verification, while being immune to spurious counterexamples.

Localization is often essential to solve non-inductive miters, leveraging speculative reduc-

tion to abstract nearly all logic except for differently-implemented yet functionally-equivalent

logic between speculated equivalences [MBPK05, MBMB09]. Without localization, the COI

of a miter may be very large despite speculative reduction. This large COI size may choke

even fairly-scalable provers such as IC3. While the benefits of localization for sequential

redundancy removal are well-known [BMP+06], prior work considered only single-process

miter verification, aside from use of a standard parallel model-checking portfolio to solve

miters [BEM12]. Ours is the first to optimize a parallel localization portfolio in this (or any

multi-property) context, using property partitioning and irredundant scheduling procedures

(Figs. 5.5 and 5.10), along with the following complementary strategies tailored for easier

vs. difficult properties. Note that substrategies in either may be employed by the other.

5.4.1 Fast-and-Lossy Localization

Fast-and-Lossy localization (Figure 5.13) attempts to quickly discharge easier property

groups, using timeouts to skip difficult groups. If the group is not solved within the allotted

time, verification data (e.g., the current abstract netlist and achieved BMC depth) is saved

for incremental reuse to accelerate later repetition. Skipped groups can be repeated as-is,

or rebalanced (Figure 5.10) after several repetitions of no progress. Note that repeating

a group as-is may likely proceed further upon repetition, by incrementally skipping earlier

processing and since a different worker might have solved some properties therein. Fast-and-

Lossy localization uses counterexample-based refinement sometimes with quick proof-based

abstraction (PBA), possibly yielding larger abstract netlists that are more-difficult to prove

156

but with less time expended in BMC itself [AM04] for faster performance on easier groups.

When ready to prove (i.e., no refinements occur for n consecutive BMC steps), abstracted

groups are passed to a sequence of lighter reduction engines then IC3 [Bra11, EMB11]) under

a modest time-limit (e.g. ≤ 300s) which can be increased across repetitions (R).

5.4.2 Aggressive Localization

Aggressive localization (Figure 5.14) is aimed at solving difficult properties, where Fast-

and-Lossy may fail due to larger-than-necessary abstractions, insufficient reductions prior

to IC3, or small group time-limits. Aggressive never repeats groups, so either imposes no

time limit whatsoever, or a large time-limit as shown applied to semantically-partitioned

(Sec. 5.4.3) sub-groups but iterated and increased until the group is solved. Aggressive

typically uses a hybrid of counterexample-based refinement and PBA run after every un-

satisfiable BMC result, to yield smaller abstractions than the former alone to accelerate

subsequent proofs at the expense of more runtime spent in BMC itself [AM04]. When ready

to prove (i.e., no refinements occur for n consecutive BMC steps), abstracted groups are

passed to a sequence of heavy reduction engines (including nested induction-only sequential

redundancy removal across all gates, which might be too expensive to converge on large

netlists before localization) followed by IC3 [Bra11, EMB11]).

5.4.3 Semantic Partitioning

Semantic partitioning [DBI+19] refers to re-partitioning a group whose unabstracted COI

was high-affinity, yielding sub-groups of high affinity with respect to abstract COI as corre-

lates to subsequent verification complexity. Abstract COI information is mined onto support

bitvectors on a per-property basis as cutpoints are refined (Figure 5.14 Step 4), considering

minimized counterexamples for individual properties despite incrementally using the same

157

function fast_lossy_localization (g, n, T)

Input: g = property group, n = inactivity-limit for BMC, T = timeout

1: Netlist L = load_incremental_abstraction(g) # initially empty

2: unsigned k = load_incremental_bmc_depth(g) # initially k = 0

3: while elapsed_time() ≤ T and unsolved(g) :

4: localize_bmc (g, L, k, unchanged) # see below

check if netlist unchanged for last n bmc steps

5: if unchanged < n : k = k + 1, goto 4 # increment depth

6: run_proof_strategy(L, g, T - elapsed_time())

7: save_incremental_data (G, k, L) # timeout: save incremental data

function localize_bmc (g, L, k, unchanged)

Input: g = property group, N = netlist, k = current BMC depth

1: bool stop = 0 # some properties fail at depth k

2: while not stop : # loop until all properties pass at depth k

3: Gates c = {}, stop = 1 # cutpoints to refine, initially empty

4: for each Property p ∈ g :

5: Result r = run_bmc(L, p, k) # run bmc with depth k

6: if r == unsat : continue # property passes

7: if cex not spurious : report_solved(p, cex), continue

8: stop = 0 # property fails

9: Gates d = cutpoints_to_refine(), c = c ∪ d

10: if not stop : refine_abstraction(L, c), unchanged = 0

11: else unchanged + = 1 # no change in abstraction

Figure 5.13: Fast-and-Lossy localization strategy with incremental repetition of high-
affinity property groups.

158

function aggressive_localization (Group g, unsigned n, bool pba, bool semantic,

Affinity t, Timeout T , Multiplier m)

Input: g = property group, n = inactivity-limit for BMC,

pba = enable/disable PBA, semantic = enable/disable partitioning,

t = affinity threshold, T = timeout, m = timeout multiplier

1: Netlist L = initial_abstraction(g) # initially empty

2: unsigned k = 0 # bmc depth

3: localize_bmc (g, L, k, unchanged) # see Figure 5.13

4: if semantic : collect_support_info (...) # see Section 5.4.3

5: if pba : minimize L using proof-based abstraction

check if netlist unchanged for last n bmc steps

6: if unchanged < n : k = k + 1, goto 3 # increment depth

7: Groups Ĝ = semantic ? structural_grouping (g, L, 3, t) : G

Sort via (I) mode (Section 5.3.2): forward, backward, or random

8: Sort Ĝ by abstract COI size

9: for each unsolved group ĝ ∈ Ĝ :

10: while elapsed_time() ≤ T and unsolved(ĝ) :

11: run_proof_strategy(L, ĝ, T - elapsed_time())

12: if unsolved groups remain : T = T ×m, goto 9

Figure 5.14: Aggressive localization strategy with semantic partitioning, counterexample-
and proof-based abstraction for property groups.

159

BMC instance for the entire group. The group is partitioned into smaller, high-localized-

affinity subgroups (Step 7) before attempting to prove.

5.4.3.1 Improvements to semantic partitioning vs. [DBI+19]

Per-property abstract-COI bloat may arise during counterexample analysis, because the

group must be mutually refined to be free of spurious counterexamples. Eager partition-

ing (as soon as any diverged abstract COI occurs) could circumvent this ambiguous bloat,

though often severely hurts performance since intermediate abstract-COI differences often

reconverge. In practice, lazy partitioning deferred until modest BMC time limits are ex-

ceeded is far superior (particularly since BMC often benefits from level=3 lower affinity),

retaining high-affinity atomic verification benefits. Abstract-COI ambiguities can be largely

corrected during proof analysis, by analyzing a distinct proof per property. Incremental data

should be saved when semantically re-partitioning, to minimize restart penalty.

Difficult sub-groups are susceptible to delaying easier later sub-groups. Subgroups should

be ordered as per (I) mode (Section 5.3.2): forward, backward, and random, configured

differently in parallel strategies for better portfolio performance with less redundant CPU-

time. Subgroups are verified in the chosen order using controlled repetition (R) and large

Aggressive time-limits (Steps 9–11). We recommend T ≥ 1h multiplying 2× at each iteration

(Step 12) and overriding to unlimited when a single sub-group remains.

5.5 Experimental Analysis

In this section, we report on the extensive experimental analysis of our techniques within

the post-induction proof strategy of a sequential redundancy removal framework (Figure

5.12). We briefly detail our benchmarks, summarize the setup used for the experiments, and

end with experimental results and a discussion of results.

160

5.5.1 Benchmarks

To eliminate noise such as different counterexamples yielding different equivalence-classes

(Step 5, Figure 5.12), we snapshot the speculatively-reduced netlist after ten minutes of

induction, before the final iteration of a six-hour eight-process semi-formal bug-hunting

[NGB+16] and localization portfolio to eliminate most incorrect and easier [CBMK11] miters.

The following experiments are run on these snapshotted netlists (pruning those with fewer

miters than processes), yielding three benchmark sets.

5.5.1.1 Equivalence Checking Benchmarks

We evaluate our techniques on two sequential equivalence checking (SEC) benchmark

sets containing properties ranging from a few hundreds to thousands. Benchmark set B1

(Figure 5.15a) are the most-difficult 291 of 1822 proprietary SEC benchmarks, where ini-

tial equivalence classes comprise original properties and name corresponded register pairs.

Benchmark set B2 (Figure 5.15b) has 269 netlists derived from the former, including a large

equivalence class for registers without name correlation.

5.5.1.2 HWMCC Benchmarks

We evaluate our techniques on selected benchmarks from the Hardware Model Checking

Competition (HWMCC). Set B3 has 72 netlists from the SINGLE property HWMCC 2017

benchmarks, comprising a large initial equivalence class of all registers. Though these bench-

marks only have one functional property, the equivalence classing for redundancy removal

generates benchmarks with several properties, often in the thousands.

161

0 75 150 225 291
Benchmark

101

103

105

#
Pr

op
er

tie
s

(a) Set B1

0 60 120 180 269
Benchmark

101

103

105

#
Pr

op
er

tie
s

(b) Set B2

0 20 40 60 72
Benchmark

100

102

104

#
Pr

op
er

tie
s

(c) Set B3

Figure 5.15: Number of properties per benchmark set used for evaluation of our techniques

5.5.2 Localization Portfolio

We select our localization portfolio (Table 5.1) from extensive evaluation of 36 single-

process localization configurations and 30 subsequent proof strategies, exploring options

such as enabling vs. disabling PBA [AM04]; different levels of property grouping vs. no

grouping [DBI+19]; enabling vs. disabling semantic partitioning (Section 5.4.3); and differ-

ent policies for group iteration (I), repetition (R), and decomposition (D) (Section 5.3.2).

The best-performing collection is chosen, maximizing complementary unique solves. Ag-

gressive localization (Section 5.4.2) primarily uses both counterexample- and proof-based

abstraction, yielding smallest abstract netlists solved with a single-process heavy strategy

of combinational rewriting; input elimination [BM05, EM13, GBI+19] which is especially

powerful after localization due to inserted cutpoints; min-area retiming [KB01]; a nested

induction-only gate-based sequential redundancy removal; then IC3. Fast-and-Lossy local-

ization (Section 5.4.1) uses counterexample-based refinement mainly with no or lighter PBA

for faster BMC, yielding larger abstract netlists solved using light combinational rewriting,

input elimination, then IC3. The Aggressive strategy is fastest for difficult properties, while

the Fast-and-Lossy strategy is fastest for easier properties.

We compare four 6-process localization portfolios derived from Table 5.1. The localiza-

tion configuration and subsequent solving strategy of each process is identical across port-

162

Table 5.1: Six-process complementary localization portfolio.

Localization
Strategy

Grouping
Level Semantic Iteration

(I)
Repetition

(R)
Decomposition

(D)
S1 Fast-and-Lossy Level-1 7 Forward 3 7

S2 Fast-and-Lossy Level-1 7 Reverse 3 3

S3 Fast-and-Lossy Level-3 3 Forward 3 3

S4 Aggressive Level-1 7 Forward 7 -
S5 Aggressive Level-1 7 Reverse 7 -
S6 Aggressive Level-3 3 Forward 7 -

folios, except for adherence to the illustrated scheduling differences as discussed below. For

greater portfolio value, each process includes localization configuration differences beyond

the illustrated scheduling distinction in Table 5.1. S1 only performs counterexample-based

refinement; S2 and S3 also perform PBA. S2 vs. S3 perform hybrid counterexample-based

refinement with light PBA (modest time limit) after every unsatisfiable BMC step vs. only

before the subsequent solving strategy, respectively. Abstract-netlist gates remaining after

PBA are considered committed and cannot be eliminated in later PBA steps [MEB+13] in S2,

but not S3. S3 utilizes a minimal unsatisfiable core to further reduce the abstract netlist.

S4-S6 are identical to S1-S3, respectively, without imposed time-limits and modulo the

above-mentioned post-localization solving strategy differences. To highlight our individual

contributions, we compare four variants of this portfolio:

1. base: No property grouping or incremental repetition of properties; all processes iterate

properties in forward order. This represents a standard state-of-the-art localization

portfolio approach without property grouping, e.g., before [DBI+19].

2. base+g extends base with affinity property grouping, including semantic partitioning

in one Fast-and-Lossy and one Aggressive strategy. This represents a state-of-the-art

localization portfolio with property grouping, e.g., as per [DBI+19] though with our

semantic refinement improvements of Section 5.4.3.

163

3. best-d extends base+g with incremental repetition (R) and irredundant iteration

order (I), to reduce CPU-time.

4. best extends best-d with decomposition (D).

Processes S1-S6 in the portfolio are generic online localization strategies. Multi-property

localization without affinity-partitioning generally yields poor/noncompetitive performance

[3], eroding most of its scalability benefit, especially for difficult miters. (Recall that these

benchmarks pre-filter easier miters, using induction and semi-formal bug-hunting.) There-

fore, both base and base+g are highly-competitive 6-process localization portfolios, for online

“first-run-of-a-testbench.” Industrial verification tools may use more processes for large test-

benches, and may post-process data from prior/ongoing runs to accelerate future results.

This level of sophisticated benchmark-specific orchestration is valuable, though does not

readily benefit “first-run-of-a-testbench” and introduces noise in experiments hence are not

used herein. We optimize runtime of a generic 6-process localization portfolio for “first-run-

of-a-testbench” without per-benchmark customization.

5.5.3 Experiment Setup

Our experiments run on a computing grid with identical x86 Linux nodes. Each bench-

mark run uses a 6-process portfolio (Table 5.1); each process S1-S6 runs on a single identical

CPU core on the same host-machine. Each process eagerly cancels solved properties across

all processes in that portfolio, to reduce redundant computation. Our techniques are imple-

mented within RuleBase: Sixthsense Edition [MBP+04].

While most prior research and competitions focus solely upon optimizing wall-time, our

techniques additionally benefit CPU-time. Traditionally, Fast-and-Lossy (unlike Aggres-

sive) processes terminate early, leaving unsolved difficult properties. In these experiments,

base and base+g augment Fast-and-Lossy processes to naively repeat identically-configured

164

0 75 150 225 300
Wall-time (hrs)

0

15

30

45

#
Pr

op
er

tie
s

(×
10

3)

best

base

base+g

best-d

(a) Set B1

0 60 120 180 240
Wall-time (hrs)

0

30

60

90

#
Pr

op
er

tie
s

(×
10

3)

best

base

base+g

best-d

(b) Set B2

Figure 5.16: Number of properties solved vs. wall-time for B1 and B2; 6-hour time limit.

S1-S3 with identical resource limits per group (whereas best-d and best add incremental-

repetition (R) with resource-doubling across repetitions), until all properties are solved or

global timeout. This naive repetition is wasteful in practice, yielding highly-redundant CPU-

time for marginal benefit. However, disabling naive repetition in these experiments yielded

3.2% fewer solves in base and base+g vs. best-d and best, which arguably unfairly penal-

ized them as state-of-the-art solutions before our contributions. Therefore, S1-S6 in each

portfolio continue working until all processes terminate, hence CPU-time is approximately

6× wall-time in these experiments.

5.5.4 Experimental Results

5.5.4.1 Proprietary Benchmarks

Figure 5.16 shows the number of properties solved vs. wall-time for benchmark sets B1

and B2. The best portfolio is the clear winner, solving 18.1% (15.3%) more properties

in 17.2% (22.9%) less time for set B1 (set B2, respectively) compared to base. Affinity-

grouping significantly improves performance of base+g over base. Level-3 grouping with our

semantic partitioning improvements (Section 5.4.3) benefits Aggressive localization strat-

165

0 2 4 6
base (hrs)

0

2

4

6

b
e
s
t

(h
rs

)

0 2 4 6
base+g (hrs)

0

2

4

6

b
e
s
t

(h
rs

)
0 2 4 6
best-d (hrs)

0

2

4

6

b
e
s
t

(h
rs

)

Figure 5.17: best vs. baselines for B1 (points below diagonal are in favor).

S1 S2 S3 S4 S5 S6
Processes

0

20

40

#
Pr

op
er

tie
s

(×
10

3)

best
base
base+g

Figure 5.18: Number of properties solved on B2 per process of Table 5.1.

egy, atomically solving properties in fewer, larger high-abstract-affinity groups compared

to level-1,-2. Incremental repetition and irredundant iteration allows best-d to solve 8.1%

more properties than base+g, less-severely hindered by difficult groups. best yields addi-

tional solves through decomposition of difficult groups after five incremental repetitions of

no progress, solving all properties in 4 vs. 6 benchmarks in B1 vs. B2 that time out with

other portfolios. Figure 5.17 details per-B1-benchmark runtimes of best, yielding a median

speedup of 2.4×, 2.0× and 1.5× vs. base, base+g, and best-d, respectively.

Figure 5.18 shows the distribution of properties solved per process (Table 5.1) within these

portfolios. The percentage solved by each Fast-and-Lossy (and Aggressive) process is nearly

166

Table 5.2: Utility of aggressive strategy processes in a portfolio.

Portfolio Set B1 Set B2
#Solved Time (h) #Solved Time (h)

3× Fast-and-Lossy, 3× Aggressive 46,844 236 93,806 165
6× Fast-and-Lossy (modified best) 41,702 275 91,639 184

uniform in best, showing near-optimal irredundant work distribution. In contrast, without

(I) and (R), portfolios base and base+g have highly-uneven distributions due largely to par-

allel processes addressing the same groups concurrently. While the number of solved (easier)

miters is considerably larger with Fast-and-Lossy, we emphasize how critical the Aggressive

solution of difficult miters is to the overall redundancy removal process. If any are left un-

solved, Figure 5.12 Step 5 will forgo attempting to merge the corresponding gates, thereby

weakening netlist reductions, risking unsolved SEC, and hurting runtime by requiring yet

another expensive proof iteration with refined equivalence classes [MBPK05] – where fan-out

miters often become more-difficult than those unsolved in prior iterations. Table 5.2 shows

the number of properties solved by best, and a modified best portfolio with all Fast-and-

Lossy strategy processes where processes S4-S6 are identical to processes S1-S3 respectively,

but without imposed time-limits and iterating groups in opposite order. Without Aggressive

processes in the portfolio, the modified best portfolio solves 10.9% (2.31%) fewer properties

in 16.5% (11.51%) more time for set B1 (set B2). Therefore, the Aggressive strategy solution

of difficult miters is vital for overall performance of the redundancy removal process.

To further highlight the value of decomposition (D), Figure 5.19b illustrates an additional

big benchmark containing 77728 properties partitioned into 9958 level-1 and level-2, and

2991 level-3 high-affinity groups. Figure 5.19a shows the number of properties solved by

each portfolio vs. time. best is 3.0× faster than base. Figure 5.19b shows the number

167

0 2 4 6 8 10 12
Wall-time (hrs)

0

25

50

75

#
Pr

op
er

tie
s

(×
10

3)

best

base

base+g

best-d

(a) Properties vs. time

S2 S3
Processes

0
5

10
15
20
25

#
Pr

op
er

tie
s

(×
10

3)

best
best-d

(b) Work distribution

Figure 5.19: Number of properties solved vs. wall-time for big: (a) by all portfolios; (b)
per process of Table 5.1 within best and best-d.

of properties solved by two Fast-and-Lossy processes of best and best-d; decomposition

enables S2 and S3 in best to collectively solve 25.2% more properties than best-d.

5.5.4.2 HWMCC Benchmarks

Figure 5.20 shows the number of properties solved by each portfolio for benchmark set

B3. The best portfolio is again the winner, solving 3054 more properties in less time than

the base portfolio. Incremental repetition and irredundant iteration is particularly beneficial

in this set: several benchmarks have counterexamples that are discovered in earlier group

repetitions, enabling Aggressive and later Fast-and-Lossy repetitions to direct resource upon

more-difficult but provable miters.

5.6 Summary and Discussion

We focus upon boosting the scalability of multi-property parallel verification, with ap-

plication to sequential redundancy removal using a localization portfolio. Our contributions

optimize both wall-time and CPU-time, orchestrating via complementary strategy explo-

168

0 50 100 150 200
Wall-time (hrs)

0

2

4

6

8

#
Pr

op
er

tie
s

(×
10

3)

best

base

base+g

best-d

Figure 5.20: Number of properties solved vs. wall-time for B3.

ration and property partitioning. We extend scalable affinity-based property partitioning to

guarantee complete utilization of available processes with provable partition affinities. We

propose improvements to the scheduling of parallel processes, such as resource-constrained

irredundant iteration, incremental repetition, and decomposition of difficult groups. We

deliver a carefully-optimized localization portfolio, self-tailoring to irredundantly address a

range of property difficulties through a synergistic balance of Fast-and-Lossy vs. Aggressive

configurations. We propose improvements to semantic group partitioning within localiza-

tion, boosting scalability by enabling the BMC within localization to benefit from larger and

slightly-lower affinity groups, then optimally sub-dividing those groups before solving the

localized properties. To our knowledge, this is the first published approach to optimize both

property partitioning and strategy exploration within a multi-property localization portfolio.

Experiments confirm that this solution works well across large suites of benchmarks.

The methods presented in this chapter are not limited to localization portfolios. The

proposed heuristics are general, and can be used to accelerate any parallel multi-property

verification task. Note that our mutually-optimized partitioning vs. strategy-exploration

orchestration offers broad insights early in an ongoing verification-tool run, whereas tradi-

tional orchestration typically explores only easier (smaller-COI) properties or only a subset of

169

strategies early in the run. Optimized parallel verification is vital for maximizing verification

throughput for design-space exploration using model-checking. The concurrent verification

of high-affinity property groups ensures that incremental algorithms can reuse information

across runs, and the control on the number of high-affinity property groups guarantees full-

utilization of available parallel processes. Strategy exploration enables the use of different

verification algorithms for different types of properties across parallel workers, while property

partitioning with heuristics helps minimize redundant work across workers.

170

CHAPTER 6. CONCLUSION AND DISCUSSION

The process of design-space exploration presents a systematic methodology of discover-

ing and evaluating design choices for a system under development. Design-space exploration

must be performed carefully due to the large number of design alternatives to be explored

to determine which design configurations are ‘optimal’, i.e., meet design specifications. The

different competing systems arise out of a need to weigh different design choices, to check

core capabilities of system versions with varying features, or to analyze a future version

against previous ones in the product line. Every unique combination of choices yields com-

peting systems that differ in terms of assumptions, implementations, and configurations.

Formal verification techniques, like model checking, are growing increasingly vital for the

development and verification of software and hardware systems. These techniques provide

high-levels of safety assurance by guaranteeing that the designed system behaves according

to the specification, and does not do anything that is outside the specified behavior. Model

checking can aid system development by systematically comparing the different models in

terms of functional correctness, however, applying model checking off-the-shelf may not scale

due to the large size of the design space for today’s complex systems. The designer faces

a tradeoff: restrict design-choice combinations, or resort to time-honored but inherently-

incomplete techniques of simulation or testing. For some systems this is an acceptable risk,

but unacceptable for safety-critical systems whose failure might endanger human life. In

this dissertation, we present scalable algorithms for design-space exploration using model

checking that enable exhaustive comparison of all competing models in large design spaces.

171

6.1 Contribution Review

Model checking a design space entails checking multiple models and properties. We

present algorithms that automatically prune the design space by finding inter-model rela-

tionships and property dependencies (Chapter 2). We observe that sequential enumeration

of the design space generates models with small incremental differences. Typical model-

checking algorithms do not take advantage of this information, and end up re-verifying

“already-explored” state spaces across models. We evaluate our methodology on case-studies

from NASA and Boeing; our techniques offer up to 9.4× speedup compared to traditional

approaches. We present algorithms that learn and reuse information from solving related

models in sequential model-checking runs (Chapter 3). Extensive experiments show that

information reuse boosts runtime performance of sequential model-checking by up to 5.48×.

Model-checking design spaces tasks often mandates checking several properties on individ-

ual models. State-of-the-art tools do not optimally exploit subproblem sharing between

“nearly-identical” properties. We present a near-linear runtime algorithm for partitioning

properties into provably high-affinity groups for individual model-checking tasks (Chapter 4).

Our techniques significantly improve multi-property model-checking performance, and often

yield >4.0× speedup. The verification effort expended for one property in a group can be

directly reused to accelerate the verification of the others. Building upon these ideas, we op-

timize parallel verification to maximize the benefits of our proposed techniques. We propose

methods to minimize redundant computation, and dynamically optimize work distribution

when checking multiple properties for individual models (Chapter 5). Our methods offer a

median 2.4× speedup for complex parallel verification tasks with thousands of properties.

172

6.2 Future Work

6.2.1 Design-Space Reduction

We plan to examine extending D3 to other logics besides LTL, and its applicability to

other types of transition systems, like families of Markov processes. We also plan to inves-

tigate further reduction in the search space by extending D3 to re-use intermediate model

checking results across several models. In a nutshell, D3 is a front-end design-space prepro-

cessing algorithm. Improved model checking back-ends that utilize available information can

help reduce the overall amortized performance. Finally, since checking families of models is

becoming commonplace, we plan to develop more industrial-sized SMV model sets and make

them publicly available as research benchmarks.

6.2.2 Incremental Verification

Ordering of models and properties in the design space improves the performance of

FuseIC3, much like variable ordering in BDDs. Heuristics for optimizing model ordering

are a promising topic for future work. Faster hashing and cone-of-influence computation

techniques will greatly benefit faster ordering of models and property grouping. Preprocess-

ing the models and properties, based on knowledge about the design space, before checking

them with FuseIC3 may remove redundancies in the design space. We plan to extend

FuseIC3 to checking liveness properties by using it as a safety checker[CS12]. We also to

plan to investigate extending FuseIC3 to reuse intermediate results of SAT queries, gener-

alized clauses, and IC3 proof obligations across models. Finally, since checking large design

spaces is becoming commonplace, we plan to develop more model-set benchmarks and make

them publicly available.

173

6.2.3 Multi-Property Verification

Future work includes improved ordering and compaction of support bitvector bits to im-

prove performance, e.g., support variables present in every property can be projected out of

the bitvectors. Dynamic trie matching that discounts differences in very small SCCs in COI

for properties, may improve level-2 grouping. Extending level-3 grouping to work with packed

bitvectors may speed up grouping: large SCCs for which any distinction exceeds threshold re-

quire identical valuations in grouping, and smaller SCCs are either unpacked to multiple bits

or treated with finer-grained map. Clever data structures, such as MA_FSA [DMWW00],

and branch-and-bound traversal [WF74] can search for fairly-high-affinity bitvectors that

differ in only a few n-bit segments, thereby reducing level-3 asymmetry. Extending semantic

partitioning to cases where refinement occurs during a proof engine run is a promising re-

search direction. We plan to investigate how semantic information from BMC and IC3 can

be used to perform property grouping.

6.2.4 Parallel Orchestration

Our mutually-optimized partitioning vs. strategy-exploration orchestration offers broad

insights early in an ongoing verification-tool run, whereas traditional orchestration typically

explores only easier (smaller-COI) properties or only a subset of strategies early in the run.

Exploring how this insight may enable dynamic benchmark-specific customized orchestration

during an ongoing run is a promising future direction, e.g. dynamically adjusting which

strategy is used per process and partition. Exploring these techniques across a broader set

of engines, and exploring incrementality of strategies across localization and equivalence-class

refinements, are additional promising research directions.

174

BIBLIOGRAPHY

[AI08] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122,
January 2008.

[AM04] Nina Amla and Ken L. McMillan. A hybrid of counterexample-based and proof-
based abstraction. In Alan J. Hu and Andrew K. Martin, editors, Formal Meth-
ods in Computer-Aided Design (FMCAD), pages 260–274, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[App] Austin Appleby. SMHasher and MurmurHash3. https://github.com/
aappleby/smhasher.

[ASH07] Christopher W. Anderson, Joost R. Santos, and Yacov Y. Haimes. A risk-
based input–output methodology for measuring the effects of the august 2003
northeast blackout. Economic Systems Research, 19(2):183–204, 2007.

[AV06] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In
Symposium on Computational Geometry (SCG), pages 144–153, New York,
NY, USA, 2006. ACM.

[AvW+13] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer. Strategies
for product-line verification: Case studies and experiments. In 2013 35th In-
ternational Conference on Software Engineering (ICSE), pages 482–491, May
2013.

[BBDEL96] I. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: An industry-
oriented formal verification tool. In DAC, 1996.

[BC00] Per Bjesse and Koen Claessen. SAT-based verification without state space
traversal. In Warren A. Hunt and Steven D. Johnson, editors, Formal Methods
in Computer-Aided Design (FMCAD), pages 409–426, Berlin, Heidelberg, Oct
2000. Springer Berlin Heidelberg.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and
Yunshan Zhu. Bounded model checking. pages 117–148, 2003.

https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher

175

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Sym-
bolic model checking without bdds. In W. Rance Cleaveland, editor, Tools
and Algorithms for the Construction and Analysis of Systems, pages 193–207,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[BCFM00] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher.
Min-wise independent permutations. Journal of Computer and System Sci-
ences, 60(3):630 – 659, 2000.

[BCFP+15] M. Bozzano, A. Cimatti, A. Fernandes Pires, D. Jones, G. Kimberly, T. Petri,
R. Robinson, and S. Tonetta. Formal design and safety analysis of AIR6110
wheel brake system. In Computer-Aided Verification, 2015.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. 98(2):428–439, 1990.

[BCM18] David Basin, Cas Cremers, and Catherine Meadows. Model Checking Security
Protocols, pages 727–762. Springer International Publishing, Cham, 2018.

[BDBK09] David C Black, Jack Donovan, Bill Bunton, and Anna Keist. SystemC: From
the ground up, volume 71. Springer Science & Business Media, 2009.

[BDK+14] Christel Baier, Clemens Dubslaff, Sascha Klüppelholz, Marcus Daum, Joachim
Klein, Steffen Märcker, and Sascha Wunderlich. Probabilistic model checking
and non-standard multi-objective reasoning. In FASE, 2014.

[BDSAB15] Shoham Ben-David, Baruch Sterin, Joanne M Atlee, and Sandy Beidu. Sym-
bolic model checking of product-line requirements using SAT-based methods.
In ICSE, volume 1, pages 189–199, 2015.

[BEM12] Robert Brayton, Niklas Een, and Alan Mishchenko. Using speculation for
sequential equivalence checking. In International Workshop on Logic and Syn-
thesis (IWLS), Jun 2012.

[BF93] R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliability
of life-critical real-time software. IEEE Transactions on Software Engineering
(TSE), 19(1):3–12, January 1993.

[Bie15] Armin Biere. HWMCC. http://fmv.jku.at/hwmcc15/, 2015.

[BLBM07] Christophe Bauer, Kristen Lagadec, Christian Bès, and Marcel Mongeau.
Flight control system architecture optimization for fly-by-wire airliners. Jour-
nal of Guidance, Control, and Dynamics, 30(4):1023–1029, jul 2007.

http://fmv.jku.at/hwmcc15/

176

[BM05] Jason Baumgartner and Hari Mony. Maximal input reduction of sequential
netlists via synergistic reparameterization and localization strategies. In Cor-
rect Hardware Design and Verification Methods, Oct 2005.

[BM10] Robert Brayton and Alan Mishchenko. ABC: An academic industrial-strength
verification tool. In Tayssir Touili, Byron Cook, and Paul Jackson, editors,
Computer Aided Verification (CAV), pages 24–40, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[BMP+06] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen. Scalable
sequential equivalence checking across arbitrary design transformations. In
2006 International Conference on Computer Design, pages 259–266, Oct 2006.

[Bra11] Aaron R. Bradley. Sat-based model checking without unrolling. In Ranjit Jhala
and David Schmidt, editors, Verification, Model Checking, and Abstract Inter-
pretation, pages 70–87, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[Bra12] Aaron R Bradley. Understanding IC3. In SAT, pages 1–14, 2012.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories, pages 305–343.
Springer International Publishing, Cham, 2018.

[CBMK11] M. Case, J. Baumgartner, H. Mony, and R. Kanzelman. Optimal redundancy
removal without fixedpoint computation. In Formal Methods in Computer-
Aided Design (FMCAD), pages 101–108, Oct 2011.

[CCD+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano
Tonetta. The nuXmv symbolic model checker. In Computer-Aided Verification,
2014.

[CCG+09] G. Cabodi, P. Camurati, L. Garcia, M. Murciano, S. Nocco, and S. Quer.
Speeding up model checking by exploiting explicit and hidden verification con-
straints. In DATE, 2009.

[CCH+12] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-
Yves Schobbens. Model checking software product lines with SNIP. Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 14(5):589–
612, jun 2012.

177

[CCK+02] Pankaj Chauhan, Edmund Clarke, James Kukula, Samir Sapra, Helmut Veith,
and Dong Wang. Automated abstraction refinement for model checking large
state spaces using sat based conflict analysis. In Mark D. Aagaard and John W.
O’Leary, editors, Formal Methods in Computer-Aided Design (FMCAD), pages
33–51, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[CCL+17] G. Cabodi, P. E. Camurati, C. Loiacono, M. Palena, P. Pasini, D. Patti, and
S. Quer. To split or to group: from divide-and-conquer to sub-task sharing for
verifying multiple properties in model checking. STTT, 2017.

[CCL+18] G. Cabodi, P. E. Camurati, C. Loiacono, M. Palena, P. Pasini, D. Patti, and
S. Quer. To split or to group: from divide-and-conquer to sub-task sharing
for verifying multiple properties in model checking. International Journal on
Software Tools for Technology Transfer (STTT), 20(3):313–325, Jun 2018.

[CCQ16] Gianpiero Cabodi, Paolo Camurati, and Stefano Quer. A graph-labeling ap-
proach for efficient cone-of-influence computation in model-checking problems
with multiple properties. Software: Practice and Experience, 46(4):493–511,
2016.

[CCS+13a] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans,
Axel Legay, and Jean-Francois Raskin. Featured transition systems: Foun-
dations for verifying variability-intensive systems and their application to
LTL model checking. IEEE Transactions on Software Engineering (TSE),
39(8):1069–1089, aug 2013.

[CCS+13b] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans,
Axel Legay, and Jean-Francois Raskin. Featured transition systems: Foun-
dations for verifying variability-intensive systems and their application to ltl
model checking. IEEE Trans. Softw. Eng., 39(8):1069–1089, 2013.

[CDT13] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. OCRA: A tool
for checking the refinement of temporal contracts. In ASE, 2013.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In Dexter Kozen, editor,
Logics of Programs, pages 52–71, Berlin, Heidelberg, 1981. Springer Berlin Hei-
delberg.

[CGM+10] Gianpiero Cabodi, Luz Amanda Garcia, Marco Murciano, Sergio Nocco, and
Stefano Quer. Partitioning interpolant-based verification for effective un-
bounded model checking. TCAD, 29(3), 2010.

178

[CGMT13] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Pa-
rameter synthesis with IC3. In Formal Methods in Computer-Aided Design.
IEEE, oct 2013.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto
Sebastiani. The MathSAT5 SMT solver. In Tools and Algorithms for Con-
struction and Analysis of Systems, pages 93–107, 2013.

[CHS+10] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-François Raskin. Model checking lots of systems: efficient verification of
temporal properties in software product lines. In ICSE, 2010.

[CHSL11] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay.
Symbolic model checking of software product lines. In International Conference
on Software Engineering (ICSE), page 321–330, New York, NY, USA, 2011.
Association for Computing Machinery.

[CHV18] Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. Introduction to
Model Checking, pages 1–26. Springer International Publishing, Cham, 2018.

[CIM+11] Hana Chockler, Alexander Ivrii, Arie Matsliah, Shiri Moran, and Ziv Nevo.
Incremental Formal Verification of Hardware. In Formal Methods in Computer-
Aided Design (FMCAD), pages 135–143, 2011.

[CK16] Sagar Chaki and Derrick Karimi. Model checking with multi-threaded IC3
portfolios. In Barbara Jobstmann and K. Rustan M. Leino, editors, Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI), pages 517–535,
Berlin, Heidelberg, Jan 2016. Springer Berlin Heidelberg.

[CKV06] Hana Chockler, Orna Kupferman, and Moshe Y Vardi. Coverage metrics for
temporal logic model checking. FMSD, 28(3):189–212, 2006.

[CM10] M. Chen and P. Mishra. Functional test generation using efficient property
clustering and learning techniques. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 29(3):396–404, March 2010.

[CN11a] G Cabodi and S Nocco. Optimized model checking of multiple properties. In
DATE, 2011.

[CN11b] G. Cabodi and S. Nocco. Optimized model checking of multiple properties. In
2011 Design, Automation Test in Europe, pages 1–4, March 2011.

179

[CS12] Koen Claessen and Niklas Sörensson. A liveness checking algorithm that counts.
In Formal Methods in Computer-Aided Design (FMCAD), pages 52–59, 2012.

[CZ17] Lianhua Chi and Xingquan Zhu. Hashing techniques: A survey and taxonomy.
ACM Comput. Surv., 50(1):11:1–11:36, April 2017.

[DASBW15] Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and Andrzej
Wąsowski. Family-based model checking without a family-based model checker.
In Bernd Fischer and Jaco Geldenhuys, editors, Model Checking Software, pages
282–299. Springer International Publishing, Cham, 2015.

[DBI+19] Rohit Dureja, Jason Baumgartner, Alexander Ivrii, Robert Kanzelman, and
Kristin Yvonne Rozier. Boosting verification scalability via structural grouping
and semantic partitioning of properties. In Formal Methods in Computer Aided
Design (FMCAD), pages 1–9, Oct 2019.

[DBK+20] Rohit Dureja, Jason Baumgartner, Robert Kanzelman, Mark Williams, and
Kristin Y. Rozier. Accelerating Parallel Verification via Complementary Prop-
erty Partitioning and Strategy Exploration. In Proceedings of Formal Meth-
ods in Computer-Aided Design (FMCAD), Haifa, Israel, September 2020.
IEEE/ACM.

[DG18] Dennis Dams and Orna Grumberg. Abstraction and Abstraction Refinement,
pages 385–419. Springer International Publishing, Cham, 2018.

[DJJ+15] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias
Volk, Harold Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám. PROPhESY:
A probabilistic parameter synthesis tool. In Computer-Aided Verification, 2015.

[DJJ+16] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias
Volk, Harold Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám. Parameter
synthesis for probabilistic systems. MBMV, 2016.

[DKW08] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated tech-
niques for formal software verification. Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 27(7):1165–1178, July 2008.

[DLP+19] Rohit Dureja, Jianwen Li, Geguang Pu, Moshe Y. Vardi, and Kristin Y. Rozier.
Intersection and rotation of assumption literals boosts bug-finding. In Supratik
Chakraborty and Jorge A. Navas, editors, Verified Software. Theories, Tools,
and Experiments (VSTTE), pages 180–192, Cham, 2019. Springer International
Publishing.

180

[DMJO18] K. Debnath, R. Murgai, M. Jain, and J. Olson. SAT-based redundancy removal.
In Design, Automation and Test in Europe (DATE), pages 315–318, Mar 2018.

[DMWW00] Jan Daciuk, Stoyan Mihov, Bruce W. Watson, and Richard E. Watson. Incre-
mental construction of minimal acyclic finite-state automata. Computational
Linguistics, 26(1):3–16, 2000.

[Dow97] Mark Dowson. The ariane 5 software failure. SIGSOFT Softw. Eng. Notes,
22(2):84, March 1997.

[DR17] Rohit Dureja and Kristin Y. Rozier. FuseIC3: An algorithm for checking
large design spaces. In Formal Methods in Computer-Aided Design (FMCAD),
Vienna, Austria, October 2017. IEEE/ACM.

[DR18] Rohit Dureja and Kristin Yvonne Rozier. More Scalable LTL Model Checking
via Discovering Design-Space Dependencies (D3). In Dirk Beyer and Marieke
Huisman, editors, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 309–327, Cham, 2018. Springer International Pub-
lishing.

[DR20a] Rohit Dureja and Kristin Yvonne Rozier. Formal framework for safety, secu-
rity, and availability of aircraft communication networks. Journal of Aerospace
Information Systems, 17(7):322–335, 2020.

[DR20b] Rohit Dureja and Kristin Yvonne Rozier. Incremental design-space model
checking via reusable reachable state approximations. Formal Methods in Sys-
tem Design, 2020.

[EK00] E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many
to the few. In CADE, 2000.

[EKVY07] K. Etessami, M. Kwiatkowska, M. Y. Vardi, and M. Yannakakis. Multi-
objective model checking of markov decision processes. In Tools and Algorithms
for Construction and Analysis of Systems, 2007.

[EM13] Niklas Eén and Alan Mishchenko. A fast reparameterization procedure. In
International Workshop on Design and Implementation of Formal Tools and
Systems, 2013.

[EMB11] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient Implementation of
Property Directed Reachability. In Formal Methods in Computer-Aided Design
(FMCAD), pages 125–134, 2011.

181

[Fix08] Limor Fix. Fifteen Years of Formal Property Verification in Intel, pages 139–
144. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[FKN+11] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker, and
Hongyang Qu. Quantitative multi-objective verification for probabilistic sys-
tems. In Tools and Algorithms for Construction and Analysis of Systems, 2011.

[GBI+19] R. K. Gajavelly, J. Baumgartner, A. Ivrii, R. L. Kanzelman, and S. Ghosh. In-
put elimination transformations for scalable verification and trace reconstruc-
tion. In Formal Methods in Computer-Aided Design (FMCAD), 2019.

[GBS+06] T. Glokler, J. Baumgartner, D. Shanmugam, R. Seigler, G. V. Huben, B. Ra-
manandray, H. Mony, and P. Roessler. Enabling large-scale pervasive logic
verification through multi-algorithmic formal reasoning. In Formal Methods in
Computer Aided Design (FMCAD), pages 3–10, Nov 2006.

[GCM+16] Marco Gario, Alessandro Cimatti, Cristian Mattarei, Stefano Tonetta, and
Kristin Yvonne Rozier. Model checking at scale: Automated air traffic control
design space exploration. In Swarat Chaudhuri and Azadeh Farzan, editors,
Computer Aided Verification (CAV), pages 3–22, Cham, 2016. Springer Inter-
national Publishing.

[GGKM18] E. Goldberg, M. Güdemann, D. Kroening, and R. Mukherjee. Efficient verifica-
tion of multi-property designs (The benefit of wrong assumptions). In Design,
Automation Test in Europe (DATE), pages 43–48, March 2018.

[GNP18] Dimitra Giannakopoulou, Kedar S. Namjoshi, and Corina S. Păsăreanu. Com-
positional Reasoning, pages 345–383. Springer International Publishing, Cham,
2018.

[Gon85] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293 – 306, 1985.

[GR16] Alberto Griggio and Marco Roveri. Comparing Different Variants of the IC3
Algorithm for Hardware Model Checking. IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., 35(6):1026–1039, Jun 2016.

[GV08] Orna Grumberg and Helmut Veith, editors. 25 Years of Model Checking: His-
tory, Achievements, Perspectives. Springer-Verlag, Berlin, Heidelberg, 2008.

[HC13] Hung-Yi Liu and L. P. Carloni. On learning-based methods for design-space ex-
ploration with high-level synthesis. In ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–7, May 2013.

182

[He10] Xiuqiang He. Efficient Techniques for Design Space Exploration and Optimiza-
tion of Distributed Real-Time Embedded Systems. PhD thesis, 2010.

[HHZ11] Ernst Moritz Hahn, Tingting Han, and Lijun Zhang. Synthesis for PCTL in
parametric markov decision processes. In NFM, 2011.

[JH19] Phillip Johnston and Rozi Harris. The boeing 737 MAX saga: lessons for
software organizations. Software Quality Professional, 21(3):4–12, 2019.

[JMN+14] Phillip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve
Schneider, and Helen Treharne. On modelling and verifying railway interlock-
ings: Tracking train lengths. Science of Computer Programming, 96(3), 2014.

[JPM+12] Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mang-
haram. Modeling and verification of a dual chamber implantable pacemaker.
In Cormac Flanagan and Barbara König, editors, Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 188–203, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[KB01] Andreas Kuehlmann and Jason Baumgartner. Transformation-based verifica-
tion using generalized retiming. In Gérard Berry, Hubert Comon, and Alain
Finkel, editors, Computer Aided Verification (CAV), pages 104–117, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[KG99] Christoph Kern and Mark R. Greenstreet. Formal verification in hardware
design: A survey. ACM Transactions on Design Automation of Electronic
Systems, 4(2):123–193, April 1999.

[KGN+09] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse
Whittemore, Sudhindra Pandav, Anna Slobodová, Christopher Taylor,
Vladimir Frolov, Erik Reeber, and Armaghan Naik. Replacing testing with
formal verification in intel core i7 processor execution engine validation. In
Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification, pages
414–429, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[KJCH19] Jintaek Kang, Dowhan Jung, Kwanghyun Chung, and Soonhoi Ha. Fast per-
formance estimation and design space exploration of manycore-based neural
processors. In Proceedings of the 56th Annual Design Automation Conference
2019, DAC ’19, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

183

[KJS11] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for effec-
tive design space exploration. In Radu Calinescu and Ethan Jackson, editors,
Foundations of Computer Software. Modeling, Development, and Verification
of Adaptive Systems, pages 33–54, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[KN12] Zurab Khasidashvili and Alexander Nadel. Implicative simultaneous satisfia-
bility and applications. In HVC, 2012.

[KNPH06] Zurab Khasidashvili, Alexander Nadel, Amit Palti, and Ziyad Hanna. Simulta-
neous sat-based model checking of safety properties. In Shmuel Ur, Eyal Bin,
and Yaron Wolfsthal, editors, HVC, 2006.

[KNPQ13] Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu. Com-
positional probabilistic verification through multi-objective model checking.
Inf. Comput., 232, 2013.

[Koo14] Phil Koopman. A case study of toyota unintended acceleration and software
safety. 2014.

[LDP+18] Jianwen Li, Rohit Dureja, Geguang Pu, Kristin Yvonne Rozier, and Moshe Y.
Vardi. SimpleCAR: An efficient bug-finding tool based on approximate reach-
ability. In Hana Chockler and Georg Weissenbacher, editors, Computer Aided
Verification, pages 37–44, Cham, 2018. Springer International Publishing.

[LGHT08] M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich. Efficient symbolic multi-
objective design space exploration. In Asia and South Pacific Design Automa-
tion Conference, pages 691–696, March 2008.

[LPP+13] C. Loiacono, M. Palena, P. Pasini, D. Patti, S. Quer, S. Ricossa, D. Ven-
draminetto, and J. Baumgartner. Fast cone-of-influence computation and es-
timation in problems with multiple properties. In Design, Automation Test in
Europe (DATE), pages 803–806, March 2013.

[LXX+09] Peng Liu, Bingjie Xia, Chunchang Xiang, Xiaohang Wang, Weidong Wang,
and Qingdong Yao. A networks-on-chip architecture design space exploration
– the lib. Computers and Electrical Engineering, 35(6):817 – 836, 2009. High
Performance Computing Architectures.

[MA03] Kenneth L. McMillan and Nina Amla. Automatic abstraction without coun-
terexamples. In Hubert Garavel and John Hatcliff, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), pages 2–17,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

184

[MAW+12] Steven Miller, Elise Anderson, Lucas Wagner, Michael Whalen, and Matts
Heimdahl. Formal Verification of Flight Critical Software. 2012.

[MBMB09] H. Mony, J. Baumgartner, A. Mishchenko, and R. Brayton. Speculative
reduction-based scalable redundancy identification. In Design, Automation and
Test in Europe (DATE), pages 1674–1679, Apr 2009.

[MBP+04] Hari Mony, Jason Baumgartner, Viresh Paruthi, Robert Kanzelman, and An-
dreas Kuehlmann. Scalable automated verification via expert-system guided
transformations. In Alan J. Hu and Andrew K. Martin, editors, Formal Meth-
ods in Computer-Aided Design (FMCAD), pages 159–173, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[MBPK05] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman. Exploiting suspected
redundancy without proving it. In Design Automation Conference (DAC),
pages 463–466, Jun 2005.

[MCBJ08] Alan Mishchenko, Michael Case, Robert Brayton, and Stephen Jang. Scalable
and scalably-verifiable sequential synthesis. In International Conference on
Computer-Aided Design, 2008.

[MCG+15] Cristian Mattarei, Alessandro Cimatti, Marco Gario, Stefano Tonetta, and
Kristin Y. Rozier. Comparing different functional allocations in automated
air traffic control design. In Formal Methods in Computer-Aided Design (FM-
CAD). IEEE, sep 2015.

[McM03] K. L. McMillan. Interpolation and sat-based model checking. In Warren A.
Hunt and Fabio Somenzi, editors, Computer Aided Verification, pages 1–13,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[ME04] Madanlal Musuvathi and Dawson R. Engler. Model checking large network
protocol implementations. In Networked Systems Design and Implementation
(NSDI), NSDI’04, page 12, USA, 2004. USENIX Association.

[MEB+13] A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony, and P. Nalla.
GLA: Gate-level abstraction revisited. In 2013 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1399–1404, March 2013.

[MGHS17] Matteo Marescotti, Arie Gurfinkel, Antti E. J. Hyvärinen, and Natasha Shary-
gina. Designing parallel PDR. In Formal Methods in Computer-Aided Design
(FMCAD), page 156–163, Austin, Texas, Oct 2017. FMCAD Inc.

185

[Mil71] Robin Milner. An algebraic definition of simulation between programs. In
Proceedings of the 2nd International Joint Conference on Artificial Intelligence,
IJCAI’71, page 481–489, San Francisco, CA, USA, 1971. Morgan Kaufmann
Publishers Inc.

[MNR+13] Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider, and
Helen Treharne. Defining and model checking abstractions of complex railway
models using CSP||B. In HVC, 2013.

[MS07a] Joao Marques-Silva. Interpolant learning and reuse in sat-based model check-
ing. Theoretical Computer Science, 174(3):31 – 43, 2007.

[MS07b] Joao Marques-Silva. Interpolant learning and reuse in sat-based model check-
ing. Electronic Notes in Theoretical Computer Science, 174(3):31 – 43, 2007.
Proceedings of the Fourth International Workshop on Bounded Model Checking
(BMC 2006).

[NGB+16] Pradeep Kumar Nalla, Raj Kumar Gajavelly, Jason Baumgartner, Hari Mony,
Robert Kanzelman, and Alexander Ivrii. The art of semi-formal bug hunting.
In International Conference on Computer-Aided Design (ICCAD), New York,
NY, USA, 2016. ACM.

[NM] R. Niemann and P. Marwedel. Hardware/software partitioning using integer
programming. In Proceedings ED&TC European Design and Test Conference.
IEEE Computer Society Press.

[PCC11] S. Padmanabhan, Y. Chen, and R. D. Chamberlain. Optimal design-space
exploration of streaming applications. In IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages 227–
230, Sep. 2011.

[Pel18] Doron Peled. Partial-Order Reduction, pages 173–190. Springer International
Publishing, Cham, 2018.

[PI17] Grant Olney Passmore and Denis Ignatovich. Formal verification of financial
algorithms. In Leonardo de Moura, editor, International Conference on Au-
tomated Deduction (CADE), pages 26–41, Cham, 2017. Springer International
Publishing.

[Pim17] A. D. Pimentel. Exploring exploration: A tutorial introduction to embedded
systems design space exploration. IEEE Design and Test, 34(1):77–90, Feb
2017.

186

[PJ09] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids
clustering. Expert Systems with Applications, 36(Part 2):3336 – 3341, 2009.

[PMRR19] V. N. Possani, A. Mishchenko, R. P. Ribas, and A. I. Reis. Parallel combina-
tional equivalence checking. In IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Oct 2019.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (FOCS), SFCS ’77,
page 46–57, USA, 1977. IEEE Computer Society.

[psl10] IEEE standard for property specification language (psl). IEEE Std 1850-2010
(Revision of IEEE Std 1850-2005), pages 1–182, April 2010.

[QDJ+16] Tim Quatmann, Christian Dehnert, Nils Jansen, Sebastian Junges, and Joost-
Pieter Katoen. Parameter synthesis for markov models: Faster than ever. In
ATVA, 2016.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors,
International Symposium on Programming, pages 337–351, Berlin, Heidelberg,
1982. Springer Berlin Heidelberg.

[RM05] Lior Rokach and Oded Maimon. Clustering Methods, pages 321–352. Springer
US, 2005.

[Roz16] Kristin Yvonne Rozier. Specification: The biggest bottleneck in formal meth-
ods and autonomy. In Sandrine Blazy and Marsha Chechik, editors, Verified
Software. Theories, Tools, and Experiments, pages 8–26, Cham, 2016. Springer
International Publishing.

[RS10] Marko Rosenmüller and Norbert Siegmund. Automating the configuration of
multi software product lines. VaMoS, 10, 2010.

[RU11] Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets.
Cambridge University Press, New York, NY, USA, 2011.

[RV07] Kristin Y Rozier and Moshe Y Vardi. LTL satisfiability checking. In SPIN,
2007.

[SB11] Fabio Somenzi and Aaron R Bradley. IC3: Where Monolithic and Incremental
Meet. In Formal Methods in Computer-Aided Design (FMCAD), pages 3–8,
2011.

187

[SKB+16] Peter Schrammel, Daniel Kroening, Martin Brain, Ruben Martins, Tino Teige,
and Tom Bienmüller. Incremental bounded model checking for embedded soft-
ware. Formal Aspects of Computing, 2016.

[SS09] Horst Schirmeier and Olaf Spinczyk. Challenges in software product line com-
position. In HICSS. IEEE, 2009.

[SSZ11] Anirban Sengupta, Reza Sedaghat, and Zhipeng Zeng. Multi-objective efficient
design space exploration and architectural synthesis of an application specific
processor (asp). Microprocessors and Microsystems, 35(4):392 – 404, 2011.

[STF16] M. Y. Siraichi, C. Tonetti, and A. Faustino da Silva. A design space exploration
of compiler optimizations guided by hot functions. In 2016 35th International
Conference of the Chilean Computer Science Society (SCCC), pages 1–12, Oct
2016.

[Str09] Ofer Strichman. Regression verification: Proving the equivalence of similar
programs. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided
Verification, pages 63–63, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[sva18] IEEE standard for systemverilog–unified hardware design, specification, and
verification language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012),
pages 1–1315, 2018.

[Tar72] Robert Tarjan. Depth first search and linear graph algorithms. In SIAM
Journal on Computing, 1972.

[Tho12] M. Thompson. Tools and techniques for efficient system-level design space
exploration. jan 2012.

[van98] C. A. J. van Eijk. Sequential equivalence checking without state space traversal.
In Design, Automation and Test in Europe (DATE), pages 618–623, Feb 1998.

[ver06] IEEE standard for verilog hardware description language. IEEE Std 1364-2005
(Revision of IEEE Std 1364-2001), pages 1–590, 2006.

[VG09] Y. Vizel and O. Grumberg. Interpolation-sequence based model checking. In
Formal Methods in Computer-Aided Design, pages 1–8, Nov 2009.

[War12] Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd edition,
2012.

188

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string correction
problem. Journal of the ACM, 21(1):168–173, jan 1974.

[YBO+98] Bwolen Yang, Randal E Bryant, David R O’Hallaron, Armin Biere, Olivier
Coudert, Geert Janssen, Rajeev K Ranjan, and Fabio Somenzi. A performance
study of bdd-based model checking. In Formal Methods in Computer-Aided
Design (FMCAD), pages 255–289, 1998.

[YCY20] B. Yuan, H. Chen, and X. Yao. Toward efficient design space exploration
for fault-tolerant multiprocessor systems. IEEE Transactions on Evolutionary
Computation, 24(1):157–169, Feb 2020.

[YDR09] Guowei Yang, Matthew B Dwyer, and Gregg Rothermel. Regression model
checking. In ICSM, pages 115–124, 2009.

[YFB+19] Guowei Yang, Antonio Filieri, Mateus Borges, Donato Clun, and Junye Wen.
Advances in symbolic execution. volume 113 of Advances in Computers, pages
225 – 287. Elsevier, 2019.

[ZBG20] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. Network-
level design space exploration of resource-constrained networks-of-systems.
ACM Trans. Embed. Comput. Syst., 19(4), June 2020.

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	1. INTRODUCTION
	1.1 Motivation
	1.2 Design Space
	1.3 Design-Space Exploration
	1.3.1 Taxonomy
	1.3.2 Formal Methods

	1.4 Application Domains
	1.4.1 Functional Verification
	1.4.2 Incremental Verification
	1.4.3 Equivalence Checking
	1.4.4 Product-line Verification

	1.5 Contributions
	1.5.1 Design-Space Reduction
	1.5.2 Incremental Verification
	1.5.3 Multi-Property Verification
	1.5.4 Parallel Orchestration

	2. DESIGN-SPACE REDUCTION
	2.1 Introduction
	2.1.1 Related Work
	2.1.2 Contributions

	2.2 Preliminaries
	2.2.1 Temporal Logic Model Checking
	2.2.2 Design-Space Model Checking
	2.2.3 Temporal Logic Satisfiability
	2.2.4 Modeling a Design Space

	2.3 Discovering Design-Space Dependencies
	2.3.1 Individual Model Redundancies
	2.3.2 Identifying Property Dependencies

	2.4 Experimental Analysis
	2.4.1 Benchmarks
	2.4.2 Experiment Setup
	2.4.3 Experimental Results

	2.5 Summary and Discussion

	3. INCREMENTAL VERIFICATION
	3.1 Introduction
	3.1.1 Related Work
	3.1.2 Contributions

	3.2 Preliminaries
	3.2.1 Safety Verification
	3.2.2 Property-Directed Reachability
	3.2.3 Problem Formulation

	3.3 Algorithm for Incremental Verification
	3.3.1 Information Learning
	3.3.2 Information Repair and Reuse

	3.4 Organizing the Design Space
	3.4.1 Hashing Techniques and Similarity Measure
	3.4.2 Partial Model Ordering
	3.4.3 Property Grouping

	3.5 Experimental Analysis
	3.5.1 Benchmarks
	3.5.2 Experiment Setup
	3.5.3 Experimental Results

	3.6 Summary and Discussion

	4. MULTI-PROPERTY VERIFICATION
	4.1 Introduction
	4.1.1 Related Work
	4.1.2 Contributions

	4.2 Preliminaries
	4.2.1 Cone-of-Influence Computation
	4.2.2 Property Affinity
	4.2.3 Group Center and Grouping Quality
	4.2.4 Localization Abstraction

	4.3 Structural Grouping of Properties
	4.3.1 Identical Cones of Influence
	4.3.2 Strongly Connected Components
	4.3.3 Hamming Distance

	4.4 Semantic Refinement of Property Groups
	4.4.1 Abstract Cone-of-Influence Computation
	4.4.2 Semantic Partitioning

	4.5 Experimental Analysis
	4.5.1 Benchmarks
	4.5.2 Experiment Setup
	4.5.3 Experimental Results

	4.6 Summary and Discussion

	5. PARALLEL ORCHESTRATION
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Contributions

	5.2 Preliminaries
	5.2.1 Affinity Analysis
	5.2.2 High-Affinity Property Grouping

	5.3 Grouping for Parallel Verification
	5.3.1 Property Grouping Algorithm
	5.3.2 Group Distribution Heuristics

	5.4 Localization for Redundancy Removal
	5.4.1 Fast-and-Lossy Localization
	5.4.2 Aggressive Localization
	5.4.3 Semantic Partitioning

	5.5 Experimental Analysis
	5.5.1 Benchmarks
	5.5.2 Localization Portfolio
	5.5.3 Experiment Setup
	5.5.4 Experimental Results

	5.6 Summary and Discussion

	6. CONCLUSION AND DISCUSSION
	6.1 Contribution Review
	6.2 Future Work
	6.2.1 Design-Space Reduction
	6.2.2 Incremental Verification
	6.2.3 Multi-Property Verification
	6.2.4 Parallel Orchestration

	BIBLIOGRAPHY

