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Abstract
The design of safety-critical systems often requires design space explo-
ration: comparing several system models that differ in terms of design
choices, capabilities, and implementations. Model checking can compare
different models in such a set, however, it is continuously challenged
by the state space explosion problem. Therefore, learning and reusing
information from solving related models becomes very important for
future checking efforts. For example, reusing variable ordering in BDD-
based model checking leads to substantial performance improvement.
In this paper, we present a SAT-based algorithm for checking a set
of models. Our algorithm, FuseIC3, extends IC3 to minimize time
spent in exploring the common state space between related models.
Specifically, FuseIC3 accumulates artifacts from the sequence of over-
approximated reachable states, called frames, from earlier runs when
checking new models, albeit, after careful repair. It uses bidirectional
reachability; forward reachability to repair frames, and IC3-type back-
ward reachability to block predecessors to bad states. We extensively
evaluate FuseIC3 over a large collection of challenging benchmarks.
FuseIC3 is on-average up to 5.48× (median 1.75×) faster than check-
ing each model individually, and up to 3.67× (median 1.72×) faster
than the state-of-the-art incremental IC3 algorithm. Moreover, we eval-
uate the performance improvement of FuseIC3 by smarter ordering of
models and property grouping using a linear-time hashing approach.

Keywords: model checking, design-space exploration, reachability analysis,
incremental verification, air-traffic control
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1 Introduction
In the early phases of design, there are several models of the system under
development constituting a design space [1–3]. Each model in such a set is
a valid design of the system, and the different models differ in terms of core
capabilities, assumptions, component implementations, or configurations. We
may need to evaluate the different design choices, or to analyze a future version
against previous ones in the product line. Model checking can be used to aid
system development via a thorough comparison of the set of models. Each
model in the set is checked one-by-one against a set of properties representing
requirements. However, for large and complex design spaces, such an approach
can be inefficient or even fail to scale to handle the combinatorial size of
the design space. Nevertheless, model checking remains the most widely used
method in industry when dealing with such systems [2–8].

We assume that different models in the design space have overlapping
reachable states, and the models are checked sequentially. In a typical sce-
nario, a model-checking algorithm doesn’t take advantage of this information
and ends up re-verifying “already explored” state spaces across models. For
large models this can be extremely wasteful as every model-checking run re-
explores already known reachable states. The problem becomes acute when
model differences are small, or when changes in the models are outside the
cone-of-influence of the property being checked, i.e., although the reachable
states in the models vary, none of them are bad. Therefore, as the number of
models grows, learning and reusing information from solving related models
becomes very important for future checking efforts.

We present an algorithm that automatically reuses information from
earlier model-checking runs to minimize the time spent in exploring the
symbolic state space in common between related models. The algorithm,
FuseIC3, is an extension to one of the fastest bit-level verification methods,
IC3 [9], also known as property directed reachability (PDR) [10]. Given a set
of models and a safety property, FuseIC3 sequentially checks each model by
reusing information: reachable state approximations, counterexamples (cex),
and invariants, learned in earlier runs to reduce the set’s total checking time.
When the difference between two subsequent models is small or beyond the
cone-of-influence of the property, the invariant or counterexample from the
earlier model may be directly used to verify the current model. Otherwise,
FuseIC3 uses reachable state approximations as inputs to IC3 to only explore
undiscovered reachable states in the current model. In the former, verifica-
tion completes almost instantly, while in the latter, significant time is saved.
When the stored information cannot be used directly, FuseIC3 repairs and
patches it using an efficient SAT-based algorithm. The repair algorithm is
the main strength of FuseIC3, and uses features present in modern SAT
solvers. It adds “just enough” extra information to the saved reachable states
to enable reuse. We demonstrate the industrial scalability of FuseIC3 on a
large set of 1,620 real-life models for the NASA NextGen air traffic con-
trol system [2, 3], selected benchmarks from the Hardware Model Checking
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Competition (HWMCC) 2015, and a set of seven models for the Boeing
AIR6110 wheel braking system [4]. Our experiments evaluate FuseIC3 along
two dimensions; checking all models with the same property, and checking
each model with several properties. Lastly, we evaluate the impact of smarter
model ordering and property grouping on the performance of FuseIC3.

1.1 Related Work
The idea of reusing model-checking information, like variable orderings,
between runs has been extensively used in BDD-based model checking leading
to substantial performance improvement [11, 12]. Similarly, intermediate SAT
solver clauses and interpolants are reused in bounded model checking [13, 14].
Reusing learned invariants in IC3 speeds up convergence of the algorithm [15].
These techniques enable efficient incremental model checking and are useful
in regression verification [16] and coverage computation [17]. FuseIC3 is an
incremental algorithm and is applicable in these scenarios.

Product line verification techniques, e.g., with Software Product Lines
(SPL), also verify models describing large design spaces [18–21]. The several
instances of feature transition systems (FTS) [22] describe a set of models.
FuseIC3 relaxes this requirement and can be used to check models that can-
not be combined into a FTS. It outputs model-checking results for every
model-property pair in the design space without dependence on any feature.
Nevertheless, SPL instances can be checked using FuseIC3. Large design spaces
can also be generated by models that are parametric over a set of inputs [23].
Parameter synthesis [24] can generate the many models in a design space
that can be checked using FuseIC3. The parameterized model-checking prob-
lem [25] deals with infinite homogeneous models. In our case, the models in a
set are heterogeneous and finite. The paradigm of “just-assume” (JA) verifica-
tion [26] provides a semantic approach to derive a debugging set of properties
to fix before verifying others, implying a property; our incremental algorithm
can speed up JA-verification by reusing information across different property
checking runs.

The work most closely related to ours is a state-of-the-art algorithm for
incremental verification of hardware [15]. It extends IC3 to reuse the generated
proof, or counterexample, in future checker runs. It extracts minimal inductive
subclauses from an earlier invariant with respect to the current model. In our
analysis, we compare FuseIC3 with this algorithm, and show that with the
same amount of information storage, FuseIC3 is faster when checking large
design spaces.

1.2 Contributions
We present a query-efficient SAT-based algorithm for checking large design
spaces, and incremental verification. Our contributions are summarized as
follows:
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1. Fully automated, general, and scalable algorithm for checking design spaces.
2. Systematic methodology to reuse reachable state approximations to guide

bad-state search in IC3. Our novel procedure to repair state approximations
requires little computation effort and is of individual interest.

3. Extensive experimental analysis using real-life benchmarks and comparison
with existing state-of-the-art incremental algorithm for IC3.

4. We make all reproducibility artifacts and source code publicly available 1.

This article is an expanded version of a peer-reviewed conference paper
presented at FMCAD 2017 [27] and extends it along the following new
contributions:

1. More detailed explanations, and theorems and proofs supporting the
correctness of the several sub-algorithms (Section 3.3.2).

2. Overview of locality-sensitive hashing [28] techniques to mine model
specifications expressed as And-Inverter-Graph circuits (Section 4.1).

3. Heuristics to organize the design space, i.e., partially order models in
a set and group properties based on similarity, to enable higher reuse
of reachable state approximations and improve performance (Sections
4.2 and 4.3).

4. Detailed experimental results incorporating model ordering and prop-
erty grouping heuristics with an in-depth analysis (Section 5).

1.3 Structure
Section 2 details background information, overviews the typical IC3 algorithm,
and defines the notation used throughout the paper. Section 3 presents the
FuseIC3 algorithm. Locality-sensitive hashing and its usage as a heuristic to
measure similarity is detailed in Section 4. A large-scale experimental evalua-
tion forms Section 5, and Section 6 concludes by highlighting future work and
possible extensions.

2 Preliminaries
2.1 Definitions
Definition 1 A Boolean transition system, or model M is represented using the
tuple (Σ, Q,Q0, δ) where

1. Σ is a finite set of atomic propositions or state variables,
2. Q is a finite set of states,
3. Q0 ⊆ Q is the set of initial states,
4. δ : Q×Q is the transition relation.

A sequence of states π = s0 → s1 → . . .→ sn is a path in M if s0 is an initial
state, each si ∈ Q for 0 ≤ i ≤ n, and for 0 < i < n, (si, si+1) ∈ δ, i.e., there is

1http://temporallogic.org/research/FMCAD17/

http://temporallogic.org/research/FMCAD17/
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a valid transition from state si to state si+1. A state t in a model is reachable
iff there exists a path such that sn = t.

Definition 2 A safety property is a Boolean formula φ over Σ.

A transition system M is SAFE, represented as M |= φ, iff φ holds in all
reachable states of M . Similarly, M is UNSAFE, represented as M ̸|= φ, iff φ
does not hold in atleast one reachable state of M .

Definition 3 A state variable a ∈ Σ is called an atom, and literal l is an atom a
or its negated form ¬a. A conjunction of literals, i.e., l1 ∧ l2 ∧ . . . ∧ lk, for k ≥ 1, is
called a cube. A disjunction of a set of literals, i.e., l1 ∨ l2 ∨ . . . ∨ lk, for k ≥ 1, is
called a clause. A Boolean formula containing a conjunction of clauses is said to be
in Conjunctive Normal Form (CNF).

A primed variable a′, such that a ∈ Σ, represents a in the next time step. If
ψ is a Boolean formula over Σ, ψ′ is obtained by replacing each variable in ψ
with the corresponding primed variable. We assume that a cube (or clause) c
can be treated as a Boolean formula, set of literals, or set of states depending
on the context it is used. For example, in the formula c ⇒ ϕ we treat c as a
Boolean formula, in the statement c1 ⊆ c2 we treat c1 and c2 as sets of literals,
and if we say a state t is in c, i.e., c(t) = 1, then we treat c as a set of states.
Similarly, a Boolean formula ψ can be treated as a set of clauses or cubes, or
a set of states depending on the context it is used. A clause c can be weakened
(or strengthened) to clause ĉ by adding (or removing) literals such that ĉ ⊇ c
(or ĉ ⊆ c).

Definition 4 Two finite sets ψ1 and ψ2 overlap iff ψ1 ∩ ψ2 ̸= ∅.

For transition systems M = (Σ, QM , Q0M
, δM ) and N = (Σ, QN , Q0N

, δN )
the set of reachable states are RM = {s ∈ QM | s is reachable in M} and
RN = {s ∈ QN | s is reachable in N}, respectively.

Definition 5 Given two transition system models M = (Σ, QM , Q0M , δM ) and N =
(Σ, QN , Q0N , δN ), we say that M and N are related iff there exists a transformation
function τ such that δN = τ(δM ).

The transformation function may be defined by a set of rules that map transi-
tions in model M to transitions in model N . We assume the existence of such
a transformation function. Note that RM ∩RN ̸= ∅ for related models M and
N . A set of models is a collection of related models. Parameter instantiation
generates a set of models from meta-models representing design-spaces [23],
or software-product lines [18]. Moreover, updates to a sequential circuit design
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in regression verification, either due to a bug fix or feature addition, generate
related transitions systems [16].

2.2 Safety Verification
The safety verification problem is to decide whether model M = (Σ, Q,Q0, δ)
is UNSAFE or SAFE with respect to a safety property φ, i.e., whether there
exists an initial state in Q0 that can reach a bad state in ¬φ, or generate an
inductive invariant I that satisfies three conditions:

1. Q0 ⇒ I 2. I ∧ δ ⇒ I ′ 3. I ⇒ φ

In SAT-based model checking algorithms [9, 29–32], the verification problem is
solved by computing over-approximations of reachable states in M , and using
them to either construct an inductive invariant, or find a counterexample.

2.3 Overview of IC3
IC3/PDR [9, 10, 33–35] is a novel SAT-based verification method based on
property directed invariant generation. Given a model M = (Σ, Q,Q0, δ),
and a safety property φ, IC3 incrementally generates an inductive strength-
ening of φ to prove whether M |= φ. It maintains a sequence of frames
S0 = Q0, S1, . . . Sk such that each Si, for 0 < i < k, satisfies φ and is an over-
approximation of states reachable in i-steps or less. If two adjacent frames
become equivalent, IC3 has found an inductive invariant and the property
holds for the model. If a state violating the property is reachable, a coun-
terexample trace is returned. Throughout IC3’s execution, it maintains the
following invariants on the sequence of frames:

1. for i > 0, Si is a CNF formula, i.e., conjunction of clauses,
2. Si+1 ⊆ Si,
3. Si ∧ δ ⇒ S′

i+1, and
4. for i < k, Si ⇒ φ.

Each clause added to the frames is an intermediate lemma constructed by
IC3 to prove whether M |= φ. The algorithm proceeds in two phases: a block-
ing phase, and a propagation phase. In the blocking phase, Sk is checked for
intersection with ¬φ. If an intersection is found, Sk violates φ. IC3 continues
by recursively blocking the intersecting state at Sk−1, and so on. If at any
point, IC3 finds an intersection with S0, M ̸|= φ and a counterexample can
be extracted. The propagation phase moves forward the clauses from preced-
ing Si to Si+1, for 0 < i ≤ k. During propagation, if two consecutive frames
become equal, a fix-point has been found and IC3 terminates. The fix-point
I represents the strengthening of φ and is an inductive invariant that satisfies
the three conditions of Section 2.2.
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2.4 SAT with Assumptions
In our formulation, we consider sat queries of the form sat(ϕ, γ), where ϕ
is a CNF formula, and γ is a set of assumption clauses. A query with no
assumptions is simply written as sat(ϕ). Essentially, the query sat(ϕ, γ) is
equivalent to sat(ϕ∧γ) but the implementation of the former is typically more
efficient. If ϕ ∧ γ is:

1. sat, get-sat-model() returns a satisfying assignment.
2. unsat, get-unsat-assumptions() returns a unsatisfiable core β of the assump-

tion clauses γ, such that β ⊆ γ, and ϕ ∧ β is unsat.

We abstract the implementation details of the underlying sat solver, and
assume interaction using the above three functions.

2.5 Notation
We reduce the task of verifying a set of models by restricting the description
of our algorithm to two related models M = (Σ, QM , Q0M

, δM ) and N =
(Σ, QN , Q0N

, δN ) in the set. Each model has to be checked against a safety
property φ. Assume that model M is checked first. The algorithm computes
frame sequence R and S for M and N , respectively. R denotes number of
frames in the sequence R.

2.6 Problem Definition
Given two related models M = (Σ, QM , Q0M

, δM ) and N = (Σ, QN , Q0N
, δN ),

and a safety property φ, let R = R0, R1, R2, . . . , Rm be the sequence of frames
computed by IC3 that satisfies the invariants of Section 2.3. We want to reuse
the reachable state approximations of M to model-check property φ against
model N , i.e., compute frame sequence S = S0, S1, S2, . . . , Sn for model N
that satisfies invariants of Section 2.3 by reusing frame sequence R such that
Si+1 = R̂i+1, where R̂i+1 = Ri+1 if Si∧δN ⇒ R′

i+1, otherwise R̂i+1 is obtained
by strengthening or weakening clauses in Ri+1 such that ∀c ∈ Ri+1, we have
Si ∧ δN ⇒ ĉ′ and Si ∧ δN ⇒ R̂i+1.

3 Algorithm
In this section, we present the main contribution of our paper, FuseIC3. We
start with the core idea behind the algorithm by giving the intuition behind
recycling IC3-generated intermediate lemmas. We then provide a general
overview of different sub-algorithms that help FuseIC3 achieve its perfor-
mance. We next describe the two main components: basic check and frame
repair of FuseIC3.
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(a) (b)

(c) (d)

Fig. 1 Intuition behind repairing frames computed for one model by IC3, and reusing them
for checking another related model in the design space.

3.1 Intuition
Recall that frames computed by IC3 represent over-approximated states.
When M is checked with IC3, frames R0, R1, . . . , Rj , are computed such that
Ri ∧ δM ⇒ R′

i+1 for i < j (invariant 3, Section 2.3). In the classical case,
checking N after M requires resetting and restarting IC3, which then com-
putes frames S0, S1, . . . , Sk for N . Due to the reset, all intermediate lemmas
are lost and verification for N has to start from the beginning. However, since
M and N are related, the frames for M and N overlap, and therefore, frames
for M can be recycled and potentially reused in the verification for N . The
idea is illustrated using Venn diagrams in Fig. 1.

In Fig. 1a, the parallelogram and ellipse represent clauses c1 and c2, respec-
tively, in frame Ri+1 such that Ri+1 = c1 ∧ c2, and the triangle represents
states reachable from Ri in one step, i.e., Ri ∧ δM . So, Ri ∧ δM ⇒ R′

i+1. Now
consider a scenario in which we recycle the clauses in Ri+1 when verifying N .
The triangle and the rectangle in Fig. 1b represent the states reachable from
Si in one step. If we were to make Si+1 = Ri+1, we end up with Si∧δN ̸⇒ S′

i+1
since c1 doesn’t contain some states reachable from Si. Therefore, we have to
modify c1 such that the invariant holds. Fig. 1c and 1d show the two possi-
ble modifications of c1. In the former case, we add states (Si ∧ δN ) \ c1 to c1
such that ĉ1 = c1 ∪ (Si ∧ δN ) \ c1. In the latter, we over-approximate c1 to
ĉ1 such that Si ∧ δN ⇒ ĉ1 (a trivial over-approximation is to make c1 equal
to the set of all states). Irrespective of the approach used, we end up with
Si ∧ δN ⇒ R̂′

i+1 = S′
i+1, where R̂i+1 = ĉ1 ∧ c2. Then we check the (i + 1)-th

step over-approximation for intersection with ¬φ and IC3 continues. In this
way, reusing clauses from model M , saves a lot of effort in rediscovering these
clauses for model N .
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3.2 Overview
FuseIC3 is a bidirectional reachability algorithm. It uses forward reachability
to reuse frames from a previously-checked related model, and IC3-type back-
ward reachability to recursively block predecessors to bad states. Algorithm 1
provide a high-level description of FuseIC3.

FuseIC3 takes as input the initial states Q0 and the transition relation δ
for the current model, and a safety property φ. The internal state maintained
by the algorithm is last invariant, last cex, and the frames R computed for the
last model verified. Initially, the state is empty. Lines 1–2 perform basic checks
in an attempt to reuse proofs from an earlier run to verify the current model.
Lines 4–15 loop until an invariant or a counterexample is found. FuseIC3
maintains a sequence of frames S0, S1, . . . , Sk for the current model being
checked. Whenever a new frame Sk is introduced in line 10, the algorithm
reuses a frame from R after repairing it with FrameRepair. The repaired
frame is added to Sk, which after propagation in lines 11–15, is checked for
intersection with a bad state. A typical execution of IC3 follows until a new
frame is introduced. Upon termination, R is replaced with the current set of
frames S, and last invariant and last cex are updated accordingly.

FrameRepair takes as input an integer i. It checks if Ri+1 can be used as
is in line 1. If yes, Ri+1 is returned. Otherwise, the frame is repaired in lines
2–7. FindClauses finds violating clauses in Ri+1. Each of these clauses is
repaired in lines 4–7 using ExpandClause and ShrinkClause. After repair,
the updated frame R̂i+1 is returned.

The models in a set are checked sequentially. When FuseIC3 is run on the
first model in the set, it reduces to running typical IC3. During propagation
and when k < R, only repaired clauses (from FrameRepair) and discovered
clauses for the current model are propagated. When k ≥ R, FrameRe-
pair returns an empty frame and all clauses from earlier frames take part in
propagation.

3.3 Basic Checks
It is possible that the changes in design between two models are very
small, and are outside the cone-of-influence of the verification procedure.
Therefore, although the models are different, they might have the same over-
approximated inductive invariant with respect to the property being checked.
A similar argument applies for two models that fail a property. In this case,
a counterexample for the first model might be a valid counterexample for
the second model. Both these checks can be carried out in very little time
as explained below. For the case when M and N have different state vari-
ables, cone-of-influence with respect to variables in N is applied on the
invariant/counterexample before performing the checks.
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Algorithm 1 High-level description of FuseIC3. Parts of the algorithm for
typical IC3 are based on the description in [10, 34].
bool FuseIC3 (Q0, δ, φ)
1: if CheckInvar(Q0, δ, last invariant, φ) : return true
2: end if
3: if SimulateCex(Q0, δ, last cex, φ) : return false
4: end if
5: k ← 0, Sk ← Q0 #first frame is initial state
6: while true : #main FuseIC3 loop
7: while sat(Sk ∧ ¬φ) : # blocking phase
8: s← get-sat-model()
9: if not recursive block(s, k) :

10: last cex ← extract cex(), return false
11: end if
12: end while
13: k ← k + 1
14: Sk ← FrameRepair(k − 1)
15: for i← 1 to k − 1 : #propagation phase
16: for each new clause c ∈ Si :
17: if not sat(Si ∧ c ∧ δ ∧ ¬c′) : add c to Si+1
18: end if
19: end for
20: if Si ≡ Si+1 : #found fix-point invariant
21: last invariant ← Si, return true
22: end if
23: end for
24: end while

frame FrameRepair (int i)
1: if not sat(Si ∧ δ ∧ ¬R′

i+1) : return Ri+1
2: end if
3: G ← FindClauses(Si, δ, Ri+1)
4: R̂i+1 ← Ri+1 \ G
5: for each clause c ∈ G :
6: ĉ← ExpandClause(Si, δ, c)
7: ĉ← ShrinkClause(Si, δ, c, ĉ)
8: R̂i+1 ← R̂i+1 ∧ ĉ
9: end for

10: return R̂i+1 #repaired frame Ri+1

3.3.1 Inductive Invariant
If IM is an inductive invariant for M with respect to a safety property φ, it
satisfies the following three conditions:
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1. Q0M
⇒ IM ,

2. IM ∧ δM ⇒ I ′
M , and

3. IM ⇒ φ.

If model differences between M and N are small, or changes in N are outside
the cone-of-influence of IM , then N |= φ iff the above conditions hold for N ,
i.e.,

1. Q0N
⇒ IM ,

2. IM ∧ δN ⇒ I ′
M , and

3. IM ⇒ φ.

3.3.2 Counterexample Trace
If M ̸|= φ, then IC3 generates a counterexample trace s0, s1, . . . sk to prove
satisfaction of ¬φ such that

1. s0 ∈ Q0M
,

2. (si, si+1) ∈ δM for i < k, and
3. sk ∈ ¬φ.

We simulate the counterexample trace for M on N and check if it satisfies the
above three conditions (using k + 1 sat calls). If the conditions are satisfied,
the counterexample trace is a valid trace in N , and we conclude that N ̸|= φ.

To summarize, if changes in two subsequent models are outside the cone-
of-influence of the proofs generated by IC3, verification completes almost
instantly. The pseudo-code for these two basic checks is given in Algorithm 2.

3.4 Frame Repair
We want to find all clauses in frame Ri+1 that are responsible for the violation
of Si ∧ δN ⇒ R′

i+1. The satisfiability model is a pair of states (a, b) such that
a ∈ Si, b ̸∈ Ri+1, and (a, b) ∈ δM . In other words, b is missing from some,
or all clauses in Ri+1. If all such missing states are added to clauses in Ri+1,
resulting in R̂i+1, the condition Si ∧ δN ⇒ R̂′

i+1 becomes valid and R̂i+1 can
be reused in checking N . Adding these states one-by-one requires several calls
to the underlying sat solver and is infeasible in practice (reduces to all-sat).
Instead, we approximate the violating clauses inRi+1. The over-approximation
ends up adding several states to Ri+1 that are in the post-image of multiple
states in Si. As the first step in repairing the frame, we find all such violating
clauses.

3.4.1 Find Violating Clauses
Let’s assume frame Ri+1 is composed of a set of clauses C = {c1, c2, . . . cn}.
There are clauses G ⊆ C such that the assertion Si ∧ δN ⇒ c′ is violated
for all c ∈ G. Set G can be found by brute-forcing the assertion check for all
clauses in C. However, such an approach doesn’t scale since IC3 frames can
have thousands of clauses. Algorithm FindClauses, which is inspired by the
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Algorithm 2 CheckInvariant evaluates the last known invariant against
the current model, and returns true if invariant holds, otherwise false. Simu-
lateCex simulates the last known counterexample on the current model, and
returns true if successful, otherwise, false.
bool CheckInvariant (Q0, δ, invariant I, φ)
1: if not sat(Q0∧¬I) and not sat(I∧δ∧¬I) and not sat(I∧¬φ) : return

true
2: else return false
3: end if

bool SimulateCex (Q0, δ, trace s, φ)
1: if not sat(s0 ∧Q0) : return false
2: end if
3: if not sat(sk ∧ ¬φ) : return false
4: end if
5: for i← 0 to len(s) :
6: if not sat(si ∧ δ ∧ s′

i+1) : return false
7: end if
8: end for
9: return true #valid counterexample

Algorithm 3 FindClauses algorithm to find all violating clauses ci ∈ R such
that S ∧ δ ̸⇒ c′. Upon termination, the set G contains all violating clauses.
FindClauses (frame S, δ, frame R)
1: for each clause ci ∈ R : #configure solver assertions
2: introduce auxiliary variable yi

3: for each literal l ∈ c′
i :

4: add assertion ¬l ∨ yi to solver
5: end for
6: end for
7: G ← ∅ #set is initially empty
8: while sat(S ∧ δ, (¬y1 ∨ ¬y2 ∨ . . . ∨ ¬yk)) :
9: α← get-sat-model()

10: for each y1, y2, . . . yk :
11: if α(yi) == ⊥ :
12: add ci to G and remove yi from sat query
13: end if
14: end for
15: end while
16: return G #set of violating clauses

Invariant Finder algorithm in [15], efficiently finds all such violating clauses.
The pseudo-code for the algorithm is given in Algorithm 3. FindClauses
takes as input frame S = Si, transition relation δ = δN , and frame R = Ri+1.
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Upon termination, it returns all violating clauses. An auxiliary variable yi

is introduced for each clause ci in R in line 2. Lines 3–4 are equivalent to
adding the assertion ci ⇒ yi to the solver. Lines 6–10 loop until the query in
line 6 is sat. On every iteration of the loop, there is at least one yi that is
assigned false. Clauses ci corresponding to all such yi are added to G and yi

is removed from the query. When the query becomes unsat, G contains all
violating clauses in R, and is returned. In practice, multiple yi are assigned
false which helps terminate the loop faster.

Theorem 1 (Violating Clauses) Given the current frame sequence S, transition
relation δ, and frame sequence to reuse R, FindClauses (Algorithm 3) returns all
violating clauses ci ∈ R such that S ∧ δ ̸⇒ c′

i.

Proof For each clause ci ∈ R, we introduce an auxiliary variable yi. For each literal
l ∈ c′

i, we add the assertion ¬l ∧ yi to the solver. Let’s assume ci = l1 ∨ l2 ∨ . . . ∨ lk.
We add asertions ¬l′1 ∨ yi, ¬l′2 ∨ yi, . . . , ¬l′k ∨ yi to the solver. Therefore, the overall
assertion for clause ci added is (¬l′1 ∨ yi) ∧ (¬l′2 ∨ yi) ∧ . . . ∧ (¬l′k ∨ yi). Now

(¬l′1 ∨ yi) ∧ (¬l′2 ∨ yi) ∧ . . . ∧ (¬l′k ∨ yi)
⇔ (¬l′1 ∧ ¬l′2 ∧ . . . ∧ ¬l′k) ∨ yi

⇔ ¬(l′1 ∨ l′2 ∨ . . . ∨ l′k) ∨ yi

⇔ ¬c′
i ∨ yi

⇔ c′
i ⇒ yi

Therefore, the operation performed in lines 1–4 of FindClauses is equivalent to
adding the assertion c′

i ⇒ yi for each clause ci ∈ R. Initially, the set of violating
clauses G is empty. For the sake of argument, let’s assume R contains only one clause
c1. If c1 = l1 ∨ l2 ∨ . . . ∨ lk, then the assertions added to the solver are ¬l′1 ∨ y1,
¬l′2 ∨ y1, . . . , ¬l′k ∨ y1. Moreover, the sat query of line 6 adds the assertions S ∧ δ,
and assumes ¬y1. Combined, these assertions are equivalent to (S ∧ δ ∧ ¬y1 ∧ ¬c′

1)
or (S ∧ δ ∧ ¬y1 ∧ ¬R′). There are two cases to consider. If the assertion is

1. unsat: The post-image of all states in S is in R, and c1 is not a violating
clause. Therefore, FindClauses terminates and returns G = ∅.

2. sat: We know that the sat model for S ∧ δ ∧ ¬y1 ∧ ¬R′ is a pair of states
(a, b′) such that a ∈ S, (a, b′) ∈ δ, but b′ ̸∈ R′, and an assignment to y1.
Since R contains only one clause, b′ ̸∈ R′ if and only if b′ ̸∈ c′

1. In other
words, none of the literals in c′

1 match the literal assignments in state b′.
Therefore, ¬l′1, ¬l′2, . . . , ¬l′k are true, which makes ¬c′

1 true. The only
possible assignment to y1 is false. Therefore, since c1 is a violating clause,
the corresponding auxiliary variable is assigned false. Clause c1 is added to
G in lines 9–10, and the sat query is updated.

Therefore, upon termination G = ∅ or G = {c1} if S ∧ δ ∧ ¬R′ is unsat and sat,
respectively. The argument forR containing only one violating clause can be extended
to multiple clauses. If a state b′ in the sat model is missing from multiple clauses in
R, their corresponding auxiliairy variables get assigned to false, and all such clauses
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Algorithm 4 ExpandClause algorithm to add literals to violating clause c
such that S ∧ δ ⇒ ĉ′. An empty clause is returned if expansion fails.
ExpandClause (frame S, δ, clause c)
1: v ← all primed variables in δ
2: l← all variables in clause c′

3: B ← v \ l #variables not in clause c
4: ĉ← c #initially ĉ = c
5: while B > 0 and sat(S ∧ δ ∧ ¬ĉ′) :
6: α← get-sat-model()
7: randomly pick any b′ ∈ B
8: if α(b′) == ⊤ : add b to clause ĉ
9: else if α(b′) == ⊥ : add ¬b to clause ĉ

10: end if
11: remove b′ from B
12: end while
13: if sat(S ∧ δ ∧ ¬ĉ′) : return ∅
14: end if
15: return ĉ #expanded clause; S ∧ δ ⇒ ĉ′

are added to G and the query updated. On every iteration of the loop in lines 6–10,
a new state pair is found until all violating clauses have been removed from R and
added to G. Therefore, upon termination, set G contains all violating clauses ci ∈ R
such that S ∧ δ ̸⇒ c′

i. □

After discovering all violating clauses, FuseIC3 attempts to expand them,
by adding literals, before reusing Ri+1 to check model N . In the trivial case,
each violating clause can be removed from Ri+1. However, doing this is quite
wasteful. For example, consider a frame in which all clauses are violating.
Reusing this frame entails restarting IC3 from an empty frame, a scenario
we want to avoid. Instead, we rely on efficient use of the sat solver to over-
approximate the violating clauses.

3.4.2 Expand Violating Clauses
A clause c is violating if none of its literals match the literals in state b (recall
the model (a, b) to the sat query Si ∧ δN ⇒ R′

i+1). If any literal from b is
added to c, resulting in ĉ, then b ∈ ĉ. Fundamentally, we want to add literals
to clause c without actually enumerating all such b such that the assertion
Si∧δN ⇒ ĉ′ holds. A literal can be added as is, or in its negated form. Adding
both makes the assertion trivially valid. For example, consider a system with
variables x, y, z, and a violating clause c = (x∨y). Our aim is to add states to
c. Either z or ¬z can be added to c, but not both. However, deciding what to
add to make the assertion valid is beyond the scope of a sat solver. Instead,
we use an efficient randomized algorithm, ExpandClause, to add literals to
clause c. The pseudo-code is given in Algorithm. 4. ExpandClause takes
as input frame S = Si, transition relation δ = δN , and the violating clause
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c ∈ Ri+1. Initially, ĉ = c. Lines 1–3 find all variables that are missing from c
and store them in set B. The loop in lines 4–9 is repeated until set B becomes
empty, or the query S∧δ ⇒ ĉ′ becomes valid. In the latter case, enough literals
have been added to expand c and the algorithm can terminate. From the sat
model α, randomly pick an assignment to a variable in B. If the assignment is
true, add the variable as is to ĉ, otherwise, negate variable and add to ĉ. The
added variable is removed from B and the loop continues. When all possible
variables have been added to ĉ and the assertion is still sat, return ĉ to be
the empty clause (c = true, or set of all states) in line 10.

Theorem 2 (Weaken Clauses) Given the current frame sequence S, transition rela-
tion δ, and violating clause c, ExpandClause (Algorithm 4) weakens violating clause
c to generate clause ĉ such that Si ∧ δ ⇒ ĉ′.

Proof In line 3, B contains all primed variables not in clause c′. Initially, ĉ′ = c′. The
sat model of the query S ∧ δ∧ ¬ĉ′ is pair of states (a, b′) such that a ∈ S, (a, b′) ∈ δ,
but b′ ̸∈ ĉ′. We know that b ̸∈ ĉ if none of the literals in ĉ match a literal in state b.
If we pick a literal in b and add it to ĉ, then b ∈ ĉ. The variable corresponding to the
added literal is removed from B and the loop repeats. On every iteration of the loop
in lines 5–10, multiple states are added to ĉ. The loop terminates when S ∧ δ ∧ ¬ĉ′

is unsat, or B is empty. In the former case, ExpandClause returns ĉ, while in the
latter, c is weakened to ĉ = true (all states are reachable from S) and returned. □

3.4.3 Shrink Expanded Clauses
Due to the randomized nature of ExpandClause, we may end up adding
more states than required to the expanded clauses. As a last step in repair-
ing the frame, we remove the excess states added from all such clauses, albeit,
maintaining the over-approximation. FuseIC3 uses unsat assumptions gener-
ated in the proof for Si ∧ δ ⇒ ĉ′ to shrink clause ĉ to c̃. The ShrinkClause
algorithm strengthens ĉ by dropping a subset of the newly added literals from
ĉ. The pseudo-code is given in Algorithm. 5. ShrinkClause takes as input
frame S = Si, transition relation δ = δN , violating clause c, and the expanded
clause ĉ. Set v contains all literals that were added to clause c by Expand-
Clause to generate clause ĉ. Lines 2–5 loop until enough literals have been
dropped from ĉ such that the Si ∧ δN ∧¬c′ ∧¬v′ is valid. On each iteration of
the loop, a literal l to drop from v is chosen. If the assertion is unsat, we can
successfully drop l from v, and replace v with the unsat assumption literals
in the query. However, if the assertion is sat, l is a required literal in v and
needs to be retained, so we try dropping another literal.

Theorem 3 (Strengthen Clauses) Given the current frame sequence S, transition
relation δ, and violating clause c, the ShrinkClause algorithm (Fig. 5) strengthens
clause ĉ to generate clause c̃ such that S ∧ δ ⇒ c̃′ and | c̃ |≤| ĉ |.
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Algorithm 5 ShrinkClause algorithm to remove excess literals from clause
c while maintaining S ∧ δ ⇒ c′.
ShrinkClause (frame S, δ, clause c, clause ĉ)

assert(not sat(S ∧ δ ∧ ¬ĉ′))
1: v ← {literals in ĉ} \ {literals in c}
2: c̃← c
3: for each l ∈ v :
4: g ← v \ l #drop literal l
5: if not sat(S ∧ δ ∧ ¬c′,¬g′) :
6: v ← {literal j | j′ ∈ get-unsat-assumptions()}
7: end if
8: end for
9: return c̃← c̃ ∨

∨
{literals in v}

Proof In line 1, v contains literals added to weaken c to ĉ, i.e., all literals that are
added to c such that S∧δ∧¬ĉ′ is unsat. Initially, c̃ = c. On every iteration of the loop
in lines 3–6, we pick a literal l to drop from ĉ. If S∧δ¬c′ ∧¬g′ is sat, where g = v \ l,
then l is a required literal and we try dropping another literal. If S ∧ δ¬c′ ∧ ¬g′ is
unsat, we extract the unsat core of the assumption literals. The unsat core is not
necessarily minimal. v is made equal to the unsat assumption literals and the loop
repeats. Upon termination, v contains the minimum literals that when added to c to
give c̃ are enough to ensure that S ∧ δ ⇒ c̃′. □

The violating clause may appear in future frames in R (due to the propaga-
tion phase when checking M). The modification is reflected in all occurrences
of the clause. All such violating clauses in Ri+1 are repaired.

Theorem 4 (Frame Repair) Given the current frame sequence Si and transition
relation δ for model N , and frame sequence Ri+1 for model M , FrameRepair
(Algorithm 1) repairs frame Ri+1 to R̂i+1 such that Si ∧ δ ⇒ R̂′

i+1.

Proof The proof follows from Theorems 1, 2, and 3. All violating clauses in Ri+1
are found by the FindClauses algorithm. (Theorem 1). The ExpandClause algo-
rithm (Theorem 2 weakens every violating clause c ∈ Ri+1 to generate clause ĉ. The
expanded clause ĉ is then strengthened to clause c̃ by the ShrinkClause algorithm
(Theorem 3). The repaired clause is added R̂i+1. Therefore, upon termination, the
FrameRepair algorithm returns repaired frame R̂i+1 such that Si ∧ δ ⇒ R̂′

i+1.
□

The repaired frame R̂i+1 is added to the set of frames for N at step i+ 1.
Therefore, Si+1 = R̂i+1. Clauses are propagated from frames Sj , for j ≤ i, to
Si+1, which is then checked for intersection with bad states, and the normal
execution of blocking and propagation phases of IC3 follows.
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4 Organizing the Design Space
If M and N have similar reachable states, FuseIC3 can reuse most of the
reachability clauses learned for M when verifying N . However, determining
models that have similar states is hard. The situation worsens when we are
dealing with design spaces containing hundreds of models. We use two prepro-
cessing heuristics to organize the design space: partially order the models, and
group similar properties, that improve the performance of FuseIC3. We use
locality-sensitive hashing [28] to order models in the design space, and group
properties. We assume that the transition relation δ, for a model M , is a CNF
formula over current- and next-state variables.

4.1 Hashing Techniques and Similarity Measure
Traditional hashing techniques map data from one domain to another. An
ideal hash function h is an injective function that maps arbitrary sized data
to data of fixed size. For example, a mapping from a string of characters to
a 32-bit integer. Formally, H : U → V , where U and V are the domain of
input objects, and fixed size hash value, respectively. Ideally, for two objects
X,Y ∈ U ,

1. H(X) = H(Y ) for X = Y , and
2. H(X) ̸= H(Y ) for X ̸= Y .

A good hash function produces a large change in output for small changes
in input. Hashing techniques find widespread use in databases, cryptography,
and DNA sequencing [36] to find duplicates. Two objects X and Y are same,
or equivalent, if H(X) = H(Y ). However, traditional hashing techniques do
not allow to find objects that are similar, e.g., the words “color” and “colors”
are similar, but not same; a hash function will produce vastly different outputs
for these two inputs.

Locality-sensitive hashing (LSH) [28] is a technique that finds similar
objects. LSH hashes inputs such that similar items map to the same bucket.
In contrast to traditional hashing, LSH aims to maximize the probability of
a collision for similar items. An LSH scheme for a universe of objects U , and
similarity function S : U × U → [0, 1] is a probability distribution over a set
H of hash functions such that

PrH∈H[H(X) = H(Y )] = S(X,Y ) for any X,Y ∈ U (1)

Hash collisions capture the similarity between two objects. Possible measures
for the similarity function include Euclidean distance, Jaccard similarity, Ham-
ming distance, edit distance, etc. For our heuristic to partially order models in
the design space, we use LSH with Jaccard distance as the similarity function.
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Fig. 2 Locality-sensitive hashing to find similar documents. D1 and D3, and D2 and D4
are similar from bands 1 and 5, respectively because they have the exact same minhash
signatures on all rows of at least one band.

The Jaccard similarity coefficient for two sets X and Y is given by

S(X,Y ) = J(X,Y ) = | X ∩ Y |
| X ∪ Y |

(2)

The goal of LSH is to find all similar objects in U based on their Jaccard sim-
ilarity. The MinHash algorithm [37] is used to estimate the Jaccard similarity
coefficient. Assuming that objects correspond to text documents, for every
document Di, we compute k minhash signatures using random hash functions.
A minhash signature for a text document D using a random hash function h
is given by

hmin(D) = min({h(x) | x ∈ D}) (3)

The signatures for each of the n documents are then divided into b bands of
r rows each such that b ∗ r = k. Two documents are similar if they share
the exact same minhash signature on all rows of atleast one band. Figure 2
shows locality-sensitive hashing on a set of five documents. D1 and D3 are
similar because they have the exact same minhash signatures for all rows in
band 1. Documents D2 and D4 are also similar as they have signatures in all
rows of band 5. The probability that two documents A and B share the same
signatures on all rows of atleast one band is given by 1− (1− J(A,B)r)b and
can be estimated using the step function approximation ( 1

b ) 1
r [38]. To estimate

the values of b and r for k = 400 and a Jaccard similarity threshold of t = 0.9,
we have

(1
b

)1
r = t ⇒

( 1
b = 20

) 1
r = 20 = 0.86 ≈ 0.9 (4)
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Locality-sensitive hashing with minhash signatures will map documents
that have their Jaccard coefficient higher than t to the same bands with high
probability. For more details on locality-sensitive hashing with minhash we
refer the reader to [38]. An important point to note is that LSH gives an
O(n) approximate algorithm to find similarities, compared to the quadratic
algorithm for pairwise similarity. For our heuristics, the k hash functions
for minhash signatures are generated by MurmurHash32 with different seed
values.

4.2 Partial Model Ordering (MO)
Let model-set M = {M1,M2, . . . ,Mn} consist of related models of a design
space. Locality-sensitive hashing is a favorable technique to find similar models
in the design space; there is a high probability that models contain the same
transition relation clauses. If the CNF formula is expressed in DIMACS CNF
format3 then a clause can be interpreted as a string of integers separated by
whitespace and terminated with 0, and the CNF formula is a set of strings.
Therefore, the transition relation δMi can be viewed as a text document Di

containing strings representing clauses. Our LSH routine takes as input a set
of documents corresponding to every model in the model-set. The heuristic
works as follows:

1. Find groups of similar models using locality-sensitive hashing.
2. Consecutively check models in a group using FuseIC3 with a property φ.

The different groups are checked in random order. We use a Jaccard similarity
coefficient of 0.9 for partial model ordering.

4.3 Property Grouping (PG)
Model checking techniques are computationally sensitive to the cone-of-
influence (COI) size. Therefore, grouping properties based on overlap between
support variables, or clauses containing support variables, in the COI of the
property can speed up checking. Property affinity [39, 40] based on Jaccard
similarity can compare the degree of overlap between COI. We generalize affin-
ity to measure overlap between clauses. For two properties, φi and φj , let Ci

and Cj , respectively, denote the clauses containing support variables in the
cones of influences of the properties with respect to a model M . The affinity
αij is given by

αij = | Ci ∩ Cj |
| Ci | + | Cj | − | Ci ∩ Cj |

(5)

If αij is larger than a given threshold, then properties φi and φj are conjoined
together. The model M is then checked against φi ∧ φj . If verification fails,

2https://github.com/aappleby/smhasher
3http://www.satcompetition.org/2009/format-benchmarks2009.html

https://github.com/aappleby/smhasher
http://www.satcompetition.org/2009/format-benchmarks2009.html
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the violated property is removed from the conjunction, and the remaining
property is checked. The heuristic works as follows:

1. Find groups of similar properties using locality-sensitive hashing (approxi-
mate analysis).

2. Conjoin similar properties that have affinity larger than a threshold (exact).
3. Consecutively check conjoined properties using FuseIC3 with a model M .

The document to hash consists of clauses containing support variables, and
the safety property clauses. The groups are checked in random order. We
use a Jaccard similarity coefficient of 0.9 for finding similar properties, and a
property affinity threshold of 0.95 for grouping properties.

5 Experimental Analysis
In this section, we report on our extensive experimental analysis with
FuseIC3. We summarize the setup used for the experiments, briefly detail our
benchmarks, and end with experimental results.

5.1 Setup
FuseIC3 is implemented in C++ and uses MathSAT5 [41] as the underlying
SMT solver. It takes SMV models or AIGER files as input. The IC3 part of
FuseIC3 is based on the description in [10] and ic3ia.4 We compare the per-
formance of FuseIC3 with typical IC3 (typ), and incremental IC3 (inc). The
algorithm for incremental IC3 is part of IBM’s RuleBase model checker [12].
We implemented inc based on the description in [15] to the best of our under-
standing. We study the impact of partial model ordering (MO) and property
grouping (PG) heuristic on the performance of FuseIC3. Locality-sensitive
hashing using minhash signatures is implemented as a preprocessing Python
script. All experiments were performed on Iowa State University’s Condo Clus-
ter comprising of nodes having two 2.6GHz 8-core Intel E5-2640 processors,
128 GB memory, and running Enterprise Linux 7.3. Each model-checking run
had exclusive access to a node, which guarantees that no resource conflict with
other jobs will occur.

5.2 Benchmarks
We evaluate FuseIC3 over a large collection of challenging benchmarks. The
benchmarks are derived from real-world case studies and modified benchmarks
from the Hardware Model Checking Competition (HWMCC) 2015.5

4https://es-static.fbk.eu/people/griggio/ic3ia/
5http://fmv.jku.at/hwmcc15/

https://es-static.fbk.eu/people/griggio/ic3ia/
http://fmv.jku.at/hwmcc15/
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5.2.1 Air Traffic Controller (ATC) Models
The benchmark consists of a large set of 1,620 real-world models representing
different possible designs for NASA’s NextGen air traffic control (ATC) sys-
tem [2]. The set of models are generated from a contract-based, parameterized
nuXmv model. Each model is checked against 34 safety properties. The entire
evaluation consists of 34 model-sets (one for each property) containing 1,620
models.

5.2.2 Selected Benchmarks from HWMCC 2015
We consider a total of 548 benchmark models from the single safety property
track. Of the 548, 110 models are solved using our implementation of IC3
within a timeout of 5 minutes. To create a model-set, we generate 200 muta-
tions of each of the 110 benchmarks. The original model is mutated to only
modify the transition system of the cone-of-influence reduced model, and not
the safety property implicit in the AIGER file; 1% of the assignments are
randomly modified. An assignment of the form g = g1 ∧ g2 is selected with
probability 0.01 and changed to g = 0, g = 1, g = ¬g1 ∧ g2, g = g1 ∧ ¬g2,
g = ¬g1 ∧ ¬g2, g = g1 ∧ g2, g = g1, g = ¬g1, g = g2, or g = ¬g2, with
equal probability. Therefore, the full evaluation consists of 110 model-sets,
each consisting of one property and 200 models.

5.2.3 Wheel Braking System (WBS) Models
The benchmark consists of seven real-world models representing possible
designs for the Boeing AIR6110 wheel braking system [4]. Each model is
checked against ∼250 safety properties. However, the properties checked for
each model are not the same. We evaluate FuseIC3 using this benchmark
to measure performance when a model is checked against several related or
similar properties. Each model is checked using a timeout of 120 minutes.

5.3 Results
5.3.1 Air Traffic Controller (ATC) Models
Each of the 34 model-sets are checked using a timeout of 720 minutes per
algorithm. The models in a set are checked in random order, and then using
the model ordering (MO) heuristic. We experiment with ten different random
orderings and report averaged results. Table 1 gives a summary of the results.
FuseIC3 is median 1.75× (average 5.48×) faster compared to typical IC3, and
median 1.34× (average 3.67×) faster compared to incremental IC3. On the
other hand, incremental IC3 is median 1.29× (average 1.3×) faster than typ-
ical IC3. The model ordering heuristic improves the performance of FuseIC3
making it median 2.23× (average 6.89×) and 1.87× (4.47×) faster than typ-
ical and incremental IC3, respectively. We use a value of k = 20, 000 with
b = 500, and r = 40 for the heuristic. It takes ∼30 minutes to find a partial
order among 1,620 models. The impact of model ordering is clearly evident:
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Table 1 Results for 34 sets of 1,620 models each for NASA Air Traffic Control System.

Algorithm Cumulative Time
(minutes)

Median (Average) Speedup

v/s typ (avg) v/s inc (avg)

Typical IC3 (typ) 2502.70 - -
Incremental IC3 (inc) 2180.57 1.29 (1.3) -
FuseIC3 1683.53 1.75 (5.48) 1.34 (3.67)
FuseIC3 + MO 1352.53 2.23 (6.89) 1.87 (4.47)

two similar models share the reachable state space, and FuseIC3 is able to
reuse several reachable state clauses.

Fig. 3a shows time taken by the algorithms on each model-set. FuseIC3
is almost always faster than typical IC3, and incremental IC3. However, for
model-sets (corresponding to property IDs 4 and 18–22) containing models
that trivially satisfy/falsify a property, typical IC3 is faster; both incremental
IC3 and FuseIC3 require a certain overhead in extracting information from
the last checker run. FuseIC3 tries minimizing the time spent in exploring
the common state space between models. In terms of the IC3 algorithm, this
relates to time spent in finding bad states and blocking them at earlier steps
(blocking phase). Fig. 3b shows time taken by each algorithm in blocking
discovered bad states. FuseIC3 spends considerably less time in the blocking
phase compared to typical IC3 and incremental IC3. Therefore, FuseIC3 is
successful in reusing a major part of the already-discovered state space between
different checker runs, a major requirement when checking large design spaces.
Fig. 3c shows the total number of calls made to the underlying SAT solver by
each algorithm. FuseIC3 makes fewer SAT calls and takes less time to check
each model-set. The model ordering heuristic improves the performance of
FuseIC3 as shown in Fig. 3d. Checking partially ordered models is faster than
random checking for all model-sets.

5.3.2 Benchmarks from HWMCC 2015
Each of the 110 model-sets are checked using a timeout of 120 minutes per algo-
rithm. The models in a set are checked in random order, and then using model
ordering (MO) heuristic. 91 of 110 model-sets were solved by all algorithms
within the timeout. Incremental IC3 solved two more model-sets compared to
typical IC3, while FuseIC3 solved five more compared to typical IC3. Table
2 gives a summary of results.

Fig. 4a shows time taken by the algorithms in checking each bench-
mark model-set. FuseIC3 is median 1.75× (average 3.18×) faster than typical
IC3, and median 1.72× (average 2.56×) faster than incremental IC3. Signif-
icant speedup is achieved when checking model-sets containing large models
with FuseIC3. Performance for model-sets containing small models is similar
for all algorithms. Fig. 4b shows time spent by each algorithm in blocking
predecessors to bad states.
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Fig. 3 Comparison between IC3 (×), incremental IC3 (+), FuseIC3 (⊙) and FuseIC3 with
model ordering (⋄) on NASA Air Traffic Control System models. There are a total of 34
properties. 1,620 models are checked per property. Every property ID corresponds to a
model-set. A point represents cumulative time taken to check all models for a property by
an algorithm.

Table 2 Results for 91 of 110 sets of 200 models each for selected HWMCC 2015
benchmarks.

Algorithm Cumulative Time
(minutes)

Median (Avergae) Speedup

v/s typ (avg) v/s inc (avg)

Typical IC3 (typ) 1024.60 - -
Incremental IC3 (inc) 1026.30 1.04 (1.07) -
FuseIC3 545.31 1.75 (3.18) 1.72 (2.56)
FuseIC3 + MO 396.65 2.32 (3.96) 2.05 (3.12)

To estimate performance of FuseIC3 on model-sets with varying degree
of overlap among models, we picked the bobtuint18neg benchmark from
HWMCC 2015. 40 model-sets with varying degrees of mutation, between 0.5%
to 20%, of the original model were generated. Each model-set consists of 100
models each. Each set was checked using a timeout of 300 minutes with typ-
ical IC3, and FuseIC3 with model ordering (MO). Model-sets corresponding
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(b) Cumulative blocking time per design space (minutes)
Fig. 4 Comparison between IC3 (×), incremental IC3 (+), and FuseIC3 (⊙) on 91 bench-
marks from HWMCC 2015. Each model is converted to a model-set containing 200 models,
generated by 1% mutation of the original. Every model ID corresponds to a model-set. A
point represents cumulative time for checking all mutated versions of a model.

0 5 10 15 20
Mutation percentage

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e
sp

ee
du

p

Fig. 5 Relative speedup between checking using FuseIC3 with model ordering versus typical
IC3. 100 models are generated for every mutation percentage between 0.5% to 20% in steps
of 0.5%, and are checked against the same property. The line is a linear fitting of the points.

to higher mutation values (greater than 20%) time out (SAT solvers are tuned
for practical designs and random mutations create SAT instances that don’t
always correspond to real designs [15]) and are not reported. Fig. 5 gives a
summary of the speedup between checking using FuseIC3 with MO versus
typical IC3. Even at higher mutation percentages, checking a model-set using
FuseIC3 is significantly faster than typical IC3.
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Table 3 Comparison between typical IC3, Incremental IC3, and FuseIC3 for AIR6110
Wheel Braking System (time is in minutes).

Model Typical IC3 Incremental IC3 FuseIC3 FuseIC3 + PG

Time Time v/s typ Time v/s typ v/s inc Time v/s typ v/s inc

M1 4.36 5.02 0.87 3.72 1.17 1.35 2.03 2.14 2.47
M2 15.78 16.65 0.95 14.80 1.07 1.13 5.64 2.79 2.95
M3 12.43 13.48 0.92 11.24 1.11 1.20 4.34 2.86 3.10
M4 12.45 13.66 0.91 11.09 1.12 1.23 4.67 2.66 2.92
M5 15.92 17.04 0.93 14.71 1.08 1.16 6.03 2.64 2.82
M6 16.85 17.79 0.95 17.04 0.99 1.04 6.57 2.56 2.70
M7 12.95 13.67 0.95 12.12 1.07 1.13 4.59 2.82 2.97

90.73 97.31 0.95 84.72 1.11 1.20 34.57 2.66 2.92
(total) (total) (median) (total) (median) (median) (total) (median) (median)

5.3.3 Wheel Braking System Models
A model in the design space was checked against several properties, differ-
ently from the other benchmarks that checked all models in a set with the
same property. Each model was checked using a timeout of 120 minutes. The
properties for each model were checked in random order, and then using the
property grouping (PG) heuristic. Table 3 gives a summary of the results.

Compared to other benchmarks, FuseIC3 achieves a smaller speedup when
checking the WBS models. Although some properties being checked for the
models are similar, i.e., the bad states representing the negation of the property
overlap, the order in which they are checked greatly influences the performance
of FuseIC3. In the random ordering used for the experiment, FuseIC3 is able to
reuse frames without any repair (the same model is being checked), however,
it spends a lot of time in blocking predecessors to bad states. Nevertheless,
it is faster than checking all properties on a model using typical IC3. On
the other hand, incremental IC3 is slower compared to typical IC3. It is
able to extract the minimal inductive invariant (invariant finder) instantly,
however, suffers from the same problem as FuseIC3. Incremental IC3, and
FuseIC3 will benefit if similar properties are checked in order. Our property
grouping (PG) heuristic conjoins properties that have overlapping cone-of-
influence. The 247 safety properties were distributed in 73 groups, and each
group was checking against a model. The PG heuristic improves model checking
performance making FuseIC3 upto 2.86× faster than typical IC3, and upto
3.10× faster than incremental IC3. The boost in performance is primarily
due to the reduced number of model checking runs for groups compared to
checking each property individually.

6 Conclusions and Future Work
FuseIC3, a SAT-query efficient algorithm, significantly speeds up model check-
ing of large design spaces. It extends IC3 to minimize time spent in exploring
the state space in common between related models. FuseIC3 spends less time
during the blocking phase (Fig. 3b and Fig. 4b) due to success in reusing sev-
eral clauses, has to learn fewer new clauses, and makes fewer SAT queries.
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The smallest salvageable unit in FuseIC3 is a clause; due to this granularity,
FuseIC3 is able to selectively reuse stored information and is faster than the
state-of-the-art algorithms that rely on reusing a coarser CNF invariant [15].
FuseIC3 is industrially applicable and scalable as witnessed by its superior
performance on a real-life set of 1,620 NASA air traffic control system models
(achieving an average 5.48× speedup), and benchmarks from HWMCC 2015
(achieving an average 3.18× speedup). Despite spending significant time in
learning new clauses for the Boeing wheel braking system models, FuseIC3 is
still faster than the previous best algorithm, typical IC3, when checking prop-
erties in random order; FuseIC3’s performance improves by ordering models
in a set, and checking similar properties together.

Ordering of models and properties in the design space improves the per-
formance of FuseIC3, much like variable ordering in BDDs. Heuristics for
optimizing model ordering are a promising topic for future work. Faster hash-
ing and cone-of-influence computation techniques will greatly benefit faster
ordering of models and property grouping. Preprocessing the models and prop-
erties, based on knowledge about the design space, before checking them with
FuseIC3 may remove redundancies in the design space. Online property group-
ing algorithms [42, 43] can by extended to dynamically reorder properties
based on information reuse and semantic information learned during a model
checking. Exploring synergies between offline and online property grouping
algorithms is a promising research direction. We plan to extend FuseIC3 to
checking liveness properties by using it as a safety checker [44]. The variation
in the COI-overlap across properties for a model impacts the performance of
FuseIC3 understanding the relationship between COI variations and clause
reuse by FuseIC3 is future work. We also to plan to investigate extending
FuseIC3 to reuse intermediate results of SAT queries, generalized clauses, and
IC3 proof obligations across models. Finally, since checking large design spaces
is becoming commonplace, we plan to develop more model-set benchmarks
and make them publicly available.
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