
FuseIC3: An Algorithm for Checking Large Design Spaces

Rohit Dureja and Kristin Yvonne Rozier
Iowa State University

Abstract—The design of safety-critical systems often requires
design space exploration: comparing several system models that
differ in terms of design choices, capabilities, and implementa-
tions. Model checking can compare different models in such a set,
however, it is continuously challenged by the state space explosion
problem. Therefore, learning and reusing information from solv-
ing related models becomes very important for future checking
efforts. For example, reusing variable ordering in BDD-based
model checking leads to substantial performance improvement.
In this paper, we present a SAT-based algorithm for checking a
set of models. Our algorithm, FuseIC3, extends IC3 to minimize
time spent in exploring the common state space between related
models. Specifically, FuseIC3 accumulates artifacts from the
sequence of over-approximated reachable states, called frames,
from earlier runs when checking new models, albeit, after careful
repair. It uses bidirectional reachability; forward reachability
to repair frames, and IC3-type backward reachability to block
predecessors to bad states. We extensively evaluate FuseIC3 over
a large collection of challenging benchmarks. FuseIC3 is on-
average up to 5.48× (median 1.75×) faster than checking each
model individually, and up to 3.67× (median 1.72×) faster than
the state-of-the-art incremental IC3 algorithm.

I. INTRODUCTION

In the early phases of design, there are several models of the
system under development constituting a design space [2, 19,
23]. Each model in such a set is a valid design of the system,
and the different models differ in terms of core capabilities,
assumptions, component implementations, or configurations.
We may need to evaluate the different design choices, or to
analyze a future version against previous ones in the product
line. Model checking can be used to aid system development
via a thorough comparison of the set of models. Each model
in the set is checked one-by-one against a set of properties
representing requirements. However, for large and complex
design spaces, such an approach can be inefficient or even fail
to scale to handle the combinatorial size of the design space.
Nevertheless, model checking remains the most widely used
method in industry when dealing with such systems [5, 19,
21, 23, 24].

We assume that different models in the design space have
overlapping reachable states, and the models are checked
sequentially. In a typical scenario, a model-checking algorithm
doesn’t take advantage of this information and ends up re-
verifying “already explored” state spaces across models. For
large models this can be extremely wasteful as every model-
checking run re-explores already known reachable states. The
problem becomes acute when model differences are small, or

Artifacts for reproducibility, code, theorem proofs, and detailed experi-
mental results can be found at http://temporallogic.org/research/FMCAD17.
Thanks to NSF CAREER Award CNS-1552934 for supporting this work.

when changes in the models are outside the cone-of-influence
of the property being checked, i.e., although the reachable
states in the models vary, none of them are bad. Therefore, as
the number of models grows, learning and reusing information
from solving related models becomes very important for future
checking efforts.

We present an algorithm that automatically reuses
information from earlier model-checking runs to minimize the
time spent in exploring the symbolic state space in common
between related models. The algorithm, FuseIC3, is an
extension to one of the fastest bit-level verification methods,
IC3 [6], also known as property directed reachability (PDR)
[17]. Given a set of models and a safety property, FuseIC3
sequentially checks each model by reusing information:
reachable state approximations, counterexamples (cex), and
invariants, learned in earlier runs to reduce the set’s total
checking time. When the difference between two subsequent
models is small or beyond the cone-of-influence of the
property, the invariant or counterexample from the earlier
model may be directly used to verify the current model.
Otherwise, FuseIC3 uses reachable state approximations as
inputs to IC3 to only explore undiscovered reachable states
in the current model. In the former, verification completes
almost instantly, while in the latter, significant time is saved.
When the stored information cannot be used directly, FuseIC3
repairs and patches it using an efficient SAT-based algorithm.
The repair algorithm is the main strength of FuseIC3, and
uses features present in modern SAT solvers. It adds “just
enough” extra information to the saved reachable states to
enable reuse. We demonstrate the industrial scalability of
FuseIC3 on a large set of 1,620 real-life models for the
NASA NextGen air traffic control system [19, 23], selected
benchmarks from HWMCC 2015 [1], and a set of seven
models for the Boeing AIR6110 wheel braking system [5].
Our experiments evaluate FuseIC3 along two dimensions;
checking all models with the same property, and checking
each model with several properties. Lastly, we evaluate the
effect of model relatedness on the performance of FuseIC3.

Related Work The idea of reusing model-checking informa-
tion, like variable orderings, between runs has been extensively
used in BDD-based model checking leading to substantial
performance improvement [3, 27]. Similarly, intermediate SAT
solver clauses and interpolants are reused in bounded model
checking [22, 25]. Reusing learned invariants in IC3 speeds up
convergence of the algorithm [8]. These techniques enable effi-
cient incremental model checking and are useful in regression
verification [28] and coverage computation [9]. FuseIC3 is an

http://temporallogic.org/research/FMCAD17

incremental algorithm and is applicable in these scenarios.
Product line verification techniques, e.g., with Software

Product Lines (SPL), also verify models describing large
design spaces [4, 13, 15, 16]. The several instances of fea-
ture transition systems (FTS) [14] describe a set of models.
FuseIC3 relaxes this requirement and can be used to check
models that cannot be combined into a FTS. It outputs model-
checking results for every model-property pair in the design
space without dependence on any feature. Nevertheless, SPL
instances can be checked using FuseIC3. Large design spaces
can also be generated by models that are parametric over a
set of inputs. Parameter synthesis [10] can generate the many
models in a design space that can be checked using FuseIC3.
The parameterized model-checking problem [18] deals with
infinite homogeneous models. In our case, the models in a set
are heterogeneous and finite.

The work most closely related to ours is a state-of-the-
art algorithm for incremental verification of hardware [8]. It
extends IC3 to reuse the generated proof, or counterexample,
in future checker runs. It extracts minimal inductive subclauses
from an earlier invariant with respect to the current model.
In our analysis, we compare FuseIC3 with this algorithm,
and show that with the same amount of information storage,
FuseIC3 is faster when checking large design spaces.

Contributions The contributions of our work are many-
fold. We present a query-efficient SAT-based algorithm for
checking large design spaces, and incremental verification.
The algorithm is fully automated, general, and scalable. To
the best of our knowledge, FuseIC3 is the first algorithm to
reuse reachable state approximations to guide bad-state search
in IC3. Our novel procedure to repair state approximations
requires little computation effort and is of individual interest.
We present an extensive experimental analysis using real-life
benchmarks. Lastly, we make all reproducibility artifacts and
source code publicly available.

Structure Section II details background information,
overviews the typical IC3 algorithm, and defines the notation
used throughout the paper. Section III presents the FuseIC3
algorithm. A large-scale experimental evaluation forms
Section IV, and Section V concludes by highlighting future
work and possible extensions.

II. PRELIMINARIES

A. Definitions

A Boolean transition system, or model M is represented
using the tuple (Σ, Q,Q0, δ) where Q0 ⊆ Q is the set of initial
states and δ is the transition relation over state variables Σ.
A safety property is a predicate ϕ over Σ. A primed variable
σ′, such that σ ∈ Σ, represents σ in the next time step. If ψ is
a Boolean formula over Σ, ψ′ is obtained by replacing each
variable in ψ with the corresponding primed variable.

A sequence of states s0, s1, . . . , sn is a path in M if s0 is
an initial state, each si ∈ Q for 0 ≤ i ≤ n, and for 0 < i < n,
(si, si+1) ∈ δ, i.e., there is a valid transition from si to si+1.
A state t in a model is reachable if there exists an execution

path such that sn = t. A model M satisfies safety property ϕ,
denoted M |=ϕ, when no reachable states of M intersect ¬ϕ.

The state variables and their negations are called literals. A
disjunction of literals is called a clause. A Boolean formula
containing a conjunction of clauses is said to be in Conjunctive
Normal Form (CNF).

We assume that a Boolean formula ψ over Σ represents a
set of states in M , or ψ ⊆ Q. Two Boolean formulas ψ1 and
ψ2 over Σ overlap if ψ1 ∩ψ2 6= ∅, i.e., they contain common
symbolic states. Models M and N are related if they contain
overlapping reachable states. A set of models is a collection
of such related models.

B. Overview of IC3

IC3/PDR [6, 17, 26] is a novel verification method based
on property directed invariant generation. Given a model
M = (Σ, Q,Q0, δ), and a safety property ϕ, IC3 incre-
mentally generates an inductive strengthening of ϕ to prove
whether M |= ϕ. It maintains a sequence of frames S0 =
Q0, S1, . . . Sk such that each Si, for 0 < i < k, satisfies ϕ
and is an over-approximation of states reachable in i-steps or
less. If two adjacent frames become equivalent, IC3 has found
an inductive invariant and the property holds for the model. If
a state violating the property is reachable, a counterexample
trace is returned. Throughout IC3’s execution, it maintains the
following invariants on the sequence of frames:

1) for i > 0, Si is a conjunction of clauses,
2) Si+1 ⊆ Si,
3) Si ∧ δ ⇒ S′i+1, and
4) for i < k, Si ⇒ ϕ.

Each clause added to the frames is an intermediate lemma
constructed by IC3 to prove whether M |= ϕ. The algorithm
proceeds in two phases: a blocking phase, and a propagation
phase. In the blocking phase, Sk is checked for intersection
with ¬ϕ. If an intersection is found, Sk violates ϕ. IC3
continues by recursively blocking the intersecting state at
Sk−1, and so on. If at any point, IC3 finds an intersection
with S0, M 6|= ϕ and a counterexample can be extracted. The
propagation phase moves forward the clauses from preceding
Si to Si+1, for 0 < i ≤ k. During propagation, if two
consecutive frames become equal, a fix-point has been found
and IC3 terminates. The fix-point I represents the inductive
strengthening of ϕ and has the following properties: Q0 ⇒ I,
I ∧ δ ⇒ I ′, and I ⇒ ϕ. We refer the reader to [7, 20] for
lower-level details of IC3.

C. SAT with Assumptions

In our formulation, we consider SAT queries of the form
sat(ϕ, γ), where ϕ is a CNF formula, and γ is a set of
assumption clauses. A query with no assumptions is simply
written as sat(ϕ). Essentially, the query sat(ϕ, γ) is equivalent
to sat(ϕ∧γ) but the implementation is typically more efficient.
If ϕ ∧ γ is:

1) SAT, get-sat-model() returns a satisfying assignment.

2) UNSAT, get-unsat-assumptions() returns a unsatisfi-
able core β of the assumption clauses γ, such that β ⊆ γ,
and ϕ ∧ β is UNSAT.

We abstract the implementation details of the underlying
SAT solver, and assume interaction using the above functions.

D. Notation

We reduce the task of verifying a set of models by restrict-
ing the description of our algorithm to two related models
M = (Σ, QM , Q0M , δM) and N = (Σ, QN , Q0N , δN) in the
set. Each model has to be checked against a safety property
ϕ. Assume that model M is checked first. The algorithm
computes frame sequence R and S for M and N , respectively.
|R| denotes number of frames in the sequence R.

III. ALGORITHM

In this section, we present the main contribution of our
paper, FuseIC3. We start with the core idea behind the algo-
rithm by giving the intuition behind recycling IC3-generated
intermediate lemmas. We then provide a general overview
of different sub-algorithms that help FuseIC3 achieve it’s
performance. We next describe the two main components:
basic check and frame repair of FuseIC3.

A. Intuition

Recall that frames computed by IC3 represent over-
approximated states. When M is checked with IC3, frames
R0, R1, . . . , Rj , are computed such that Ri ∧ δM ⇒ R′i+1 for
i < j (invariant 3, Section II-B). In the classical case, checking
N after M requires resetting and restarting IC3, which then
computes frames S0, S1, . . . , Sk for N . Due to to the reset,
all intermediate lemmas are lost and verification for N has to
start from the beginning. However, since M and N are related,
the frames for M and N overlap, and therefore, frames for
M can be recycled and potentially reused in the verification
for N . The idea is illustrated using Venn diagrams in Fig. 1.

In Fig. 1a, the parallelogram and ellipse represent clauses c1
and c2, respectively, in frame Ri+1 such that Ri+1 = c1 ∧ c2,
and the triangle represents states reachable from Ri in one
step, i.e., Ri ∧ δM . So, Ri ∧ δM ⇒ R′i+1. Now consider
a scenario in which we recycle the clauses in Ri+1 when
verifying N . The triangle and the rectangle in Fig. 1b represent
the states reachable from Si in one step. If we were to make
Si+1 = Ri+1, we end up with Si∧δN 6⇒ S′i+1 since c1 doesn’t
contain some states reachable from Si. Therefore, we have to
modify c1 such that the invariant holds. Fig. 1c and 1d show
the two possible modifications of c1. In the former case, we
add states (Si∧δN)\c1 to c1. In the latter, we over-approximate
c1 to ĉ1 such that Si ∧ δN ⇒ ĉ1 (a trivial over-approximation
is to make c1 equal to the set of all states). Irrespective of
the approach used, we end up with Si ∧ δN ⇒ R̂′i+1 = S′i+1,
where R̂i+1 = ĉ1∧c2. Then we check the (i+1)-th step over-
approximation for intersection with ¬ϕ and IC3 continues. In
this way, reusing clauses from model M , saves a lot of effort
in rediscovering these clauses for model N . FuseIC3 uses state
over-approximations.

(a) (b)

(c) (d)

Fig. 1. Intuition behind repairing frames computed for one model by IC3,
and reusing them for checking another related model.

bool FuseIC3 (Q0, δ, ϕ)
1: if CHECKINVAR(Q0, δ, last invariant, ϕ) : return true
2: if SIMULATECEX(Q0, δ, last cex, ϕ) : return false
3: k ← 0, Sk ← Q0 # first frame is initial state
4: while true : # main FuseIC3 loop
5: while sat(Sk ∧ ¬ϕ) : # blocking phase
6: s← get-sat-model()
7: if not recursive block(s, k) :
8: last cex ← extract cex(), return false
9: k ← k + 1

10: Sk ← FRAMEREPAIR(k − 1)
11: for i← 1 to k − 1 : # propagation phase
12: for each new clause c ∈ Si :
13: if not sat(Si ∧ c ∧ δ ∧ ¬c′) : add c to Si+1

14: if Si ≡ Si+1 : # found fix-point invariant
15: last invariant ← Si, return true

frame FRAMEREPAIR (int i)
1: if not sat(Si ∧ δ ∧ ¬R′i+1) : return Ri+1

2: G ← FINDCLAUSES(Si, δ, Ri+1)
3: R̂i+1 ← Ri+1 \ G
4: for each clause c ∈ G :
5: ĉ← EXPANDCLAUSE(Si, δ, c)
6: ĉ← SHRINKCLAUSE(Si, δ, c, ĉ)
7: R̂i+1 ← R̂i+1 ∧ ĉ
8: return R̂i+1 # repaired frame Ri+1

Fig. 2. High-level description of FuseIC3. Parts of the algorithm for typical
IC3 are based on the description in [17, 20].

B. Overview

FuseIC3 is a bidirectional reachability algorithm. It uses
forward reachability to reuse frames from a previously-
checked related model, and IC3-type backward reachability
to recursively block predecessors to bad states. The algorithm
description appears in Fig. 2.

FuseIC3 takes as input the initial states Q0 and the transi-
tion relation δ for the current model, and a safety property ϕ.
The internal state maintained by the algorithm is last invariant,
last cex, and the frames R computed for the last model
verified. Initially, the state is empty. Lines 1–2 perform basic
checks in an attempt to reuse proofs from an earlier run to
verify the current model. Lines 4–15 loop until an invariant or

a counterexample is found. FuseIC3 maintains a sequence of
frames S0, S1, . . . , Sk for the current model being checked.
Whenever a new frame Sk is introduced in line 10, the
algorithm reuses a frame from R after repairing it with
FRAMEREPAIR. The repaired frame is added to Sk, which
after propagation in lines 11–15, is checked for intersection
with a bad state. A typical execution of IC3 follows until a
new frame is introduced. Upon termination, R is replaced with
the current set of frames S, and last invariant and last cex are
updated accordingly.

FRAMEREPAIR takes as input an integer i. It checks if Ri+1

can be used as is in line 1. If yes, Ri+1 is returned. Other-
wise, the frame is repaired in lines 2–7. FINDCLAUSES finds
violating clauses in Ri+1. Each of these clauses is repaired in
lines 4–7 using EXPANDCLAUSE and SHRINKCLAUSE. After
repair, the updated frame R̂i+1 is returned.

The models in a set are checked sequentially. When
FuseIC3 is run on the first model in the set, it reduces to
running typical IC3. During propagation and when k < |R|,
only repaired clauses (from FRAMEREPAIR) and discovered
clauses for the current model are propagated. When k ≥ |R|,
FRAMEREPAIR returns an empty frame and all clauses from
earlier frames take part in propagation.

C. Basic Checks

It is possible that the changes in design between two
models are very small, and are outside the cone-of-influence
of the verification procedure. Therefore, although the models
are different, they might have the same over-approximated
inductive invariant with respect to the property being checked.
A similar argument applies for two models that fail a property.
In this case, a counterexample for the first model might be a
valid counterexample for the second model. Both these checks
can be carried out in very little time as explained below. For
the case when M and N have different state variables, cone-
of-influence with respect to variables in N is applied on the
invariant/counterexample before performing the checks.

a) Inductive Invariant: If IM is an inductive invariant for
M with respect to ϕ, it satisfies the following three conditions:

1) Q0M ⇒ IM ,
2) IM ∧ δM ⇒ I ′M , and
3) IM ⇒ ϕ.
If changes in N are outside the cone-of-influence of IM ,

then N |= ϕ if the above conditions hold for N (checked
using three SAT calls).

b) Counterexample Trace: If M 6|= ϕ, IC3 generates a
counterexample trace s0, s1, . . . sk such that

1) s0 ∈ Q0M ,
2) (si, si+1) ∈ δM for i < k, and
3) sk ∈ ¬ϕ.
Simulate the counterexample trace for M on N and check

if it satisfies the above three conditions (using k+1 SAT calls).
If the conditions are satisfied, conclude that N 6|= ϕ.

To summarize, if changes in two subsequent models are
outside the cone-of-influence of the proofs generated by IC3,

bool CHECKINVARIANT (Q0, δ, invariant I, ϕ)
1: if not sat(Q0 ∧ ¬I) and not sat(I ∧ δ ∧ ¬I) and not

sat(I ∧ ¬ϕ) : return true
2: else return false

bool SIMULATECEX (Q0, δ, trace s, ϕ)
1: if not sat(s0 ∧Q0) : return false
2: if not sat(sk ∧ ¬ϕ) : return false
3: for i← 0 to len(s) :
4: if not sat(si ∧ δ ∧ s′i+1) : return false

5: return true # valid counterexample

Fig. 3. CHECKINVARIANT evaluates the last known invariant against the cur-
rent model, and returns true if invariant holds, otherwise false. SIMULATECEX
simulates the last known counterexample on the current model, and returns
true if successful, otherwise, false.

FINDCLAUSES (frame S, δ, frame R)
1: for each clause ci ∈ R : # configure solver assertions
2: introduce auxiliary variable yi
3: for each literal l ∈ c′i :
4: add assertion ¬l ∨ yi to solver
5: G ← ∅ # set is initially empty
6: while sat(S ∧ δ, (¬y1 ∨ ¬y2 ∨ . . . ∨ ¬yk)) :
7: α← get-sat-model()
8: for each y1, y2, . . . yk :
9: if α(yi) == ⊥ :

10: add ci to G and remove yi from sat query
11: return G # set of violating clauses

Fig. 4. FINDCLAUSES algorithm to find all clauses in R that lead to violation
of S ∧ δ 6⇒ R′. Upon termination, G contains violating clauses.

verification completes almost instantly. The pseudo-code for
these two basic checks is given in Fig. 3.

D. Frame Repair

We want to expand clauses in frame Ri+1 that are respon-
sible for the violation of Si ∧ δN ⇒ R′i+1. The satisfiability
model is a pair of states (a, b) such that a ∈ Si, b 6∈ Ri+1, and
(a, b) ∈ δM . In other words, b is missing from some, or all
clauses in Ri+1. If all such missing states are added to clauses
in Ri+1, resulting in R̂i+1, the condition Si ∧ δN ⇒ R̂′i+1

becomes valid and R̂i+1 can be reused in checking N . Adding
these states one-by-one requires several calls to the underlying
SAT solver and is infeasible in practice (reduces to all-SAT).
Instead, the violating clauses in Ri+1 are over-approximated.
The over-approximation ends up adding several states to Ri+1

that are in the post-image of multiple states in Si. As the first
step in repairing the frame, we want to find all such violating
clauses.

Find Violating Clauses: Let’s assume frame Ri+1 is composed
of clauses C = {c1, c2, . . . cn}. There are clauses G ⊆ C such
that the assertion Si ∧ δN ⇒ c′ is violated for all c ∈ G.
Set G can be found by brute-forcing the assertion check for
all clauses in C. However, such an approach doesn’t scale
since IC3 frames can have thousands of clauses. Algorithm
FINDCLAUSES, which is inspired by the Invariant Finder
algorithm in [8], efficiently finds such violating clauses. The
pseudo-code for the algorithm is given in Fig. 4.

EXPANDCLAUSE (frame S, δ, clause ĉ)
1: v ← all primed variables in δ
2: l← all variables in clause ĉ′

3: B ← v \ l # variables not in clause ĉ
4: while |B| > 0 and sat(S ∧ δ ∧ ¬ĉ′) :
5: α← get-sat-model()
6: randomly pick any b′ ∈ B
7: if α(b′) == > : add b to clause ĉ
8: else if α(b′) == ⊥ : add ¬b to clause ĉ
9: remove b′ from B

10: if sat(S ∧ δ ∧ ¬ĉ′) : return ∅
11: return ĉ # expanded clause; S ∧ δ ⇒ ĉ′

Fig. 5. EXPANDCLAUSE algorithm to add literals to clause c such that S ∧
δ ⇒ ĉ′. Upon termination, an empty set is returned if expansion fails.

FINDCLAUSES takes as input frame S = Si, transition
relation δ = δN , and frame R = Ri+1. Upon termination,
it returns all violating clauses. An auxiliary variable yi is
introduced for each clause ci in R in line 2. Lines 3–4 are
equivalent to adding the assertion ci ⇒ yi to the solver. Lines
6–10 loop until the query in line 6 is SAT. On every iteration
of the loop, there is at least one yi that is assigned false.
Clauses ci corresponding to all such yi are added to G and yi
is removed from the query. When the query becomes UNSAT, G
contains all violating clauses in R, and is returned. In practice,
multiple yi are assigned false which helps terminate the loop
faster.

Lemma 1. FINDCLAUSES returns all clauses in Ri+1 that
are responsible for Si ∧ δ 6⇒ R′i+1.

After discovering all violating clauses, FuseIC3 attempts
to expand them before reusing Ri+1 to check model N . In
the trivial case, each violating clause can be removed from
Ri+1 altogether. However, doing this is quite wasteful. For
example, consider a frame in which all clauses are violating.
Reusing this frame entails restarting IC3 from an empty frame,
a scenario we want to avoid. Instead, we rely on efficient use
of the SAT solver to over-approximate the violating clauses.

Expand Violating Clauses: A clause c is violating if none of
its literals match the literals in state b (recall the model (a, b)
to the SAT query Si ∧ δN ⇒ R′i+1). If any literal from b is
added to c, resulting in ĉ, then b ∈ ĉ. Fundamentally, we want
to add literals to clause c without actually enumerating all
such b such that the assertion Si ∧ δN ⇒ ĉ′ holds. A literal
can be added as is, or in its negated form. Adding both makes
the assertion trivially valid. For example, consider a system
with variables x, y, z, and a violating clause c = (x∨ y). Our
aim is to add states to c. Either z or ¬z can be added to
c, but not both. However, deciding what to add to make the
assertion valid is beyond the scope of a SAT solver. Instead,
we use an efficient randomized algorithm, EXPANDCLAUSE,
to add literals to clause c. The pseudo-code for the algorithm
is given in Fig. 5.

EXPANDCLAUSE takes as input frame S = Si, transition
relation δ = δN , and the violating clause c ∈ Ri+1. Initially,
ĉ = c. Lines 1–3 find all variables that are missing from c and

SHRINKCLAUSE (frame S, δ, clause c, clause ĉ)
assert(not sat(S ∧ δ ∧ ¬ĉ′))

1: v ← {literals in ĉ} \ {literals in c}
2: for each l ∈ v :
3: g ← v \ l # drop literal l
4: if not sat(S ∧ δ ∧ ¬c′,¬g′) :
5: v ← {literals j | j′ ∈ get-unsat-assumptions()}
6: return c ∨∨{literals in v}

Fig. 6. SHRINKCLAUSE algorithm to remove excess literals from clause c
while maintaining S ∧ δ ⇒ c′.

store them in set B. The loop in lines 4–9 is repeated until set
B becomes empty, or the query S ∧ δ ⇒ ĉ′ becomes valid. In
the latter case, enough literals have been added to expand c and
the algorithm can terminate. From the SAT model α, randomly
pick an assignment to a variable in B. If the assignment is
true, add the variable as is to ĉ, otherwise, negate variable
and add to ĉ. The added variable is removed from B and the
loop continues. When all possible variables have been added
to ĉ and the assertion is still SAT, return ĉ to be the empty
clause (c = true, or set of all states) in line 10.

Lemma 2. EXPANDCLAUSE expands clause c to ĉ such that
the assertion Si ∧ δ ⇒ ĉ′ is valid.

Shrink Expanded Clauses: Due to the nature of the randomized
algorithm, we may end up adding more states than required to
the expanded clauses. As a last step in repairing the frame, we
remove the excess states added from all such clauses, albeit,
maintaining the over-approximation. FuseIC3 uses UNSAT
assumptions generated in the proof for Si ∧ δ ⇒ ĉ′ to shrink
clause ĉ. The SHRINKCLAUSE algorithm tries dropping a
subset of the newly added literals from ĉ. The pseudo-code
for the algorithm is given in Fig. 6.

SHRINKCLAUSE takes as input frame S = Si, transition
relation δ = δN , non-expanded violating clause c, and the
expanded non-violating clause ĉ. Set v contains all literals
that were added to c by EXPANDCLAUSE. Lines 2–5 loop
until enough literals have been dropped from ĉ such that the
Si ∧ δN ∧ ¬c′ ∧ ¬v′ is valid. On each iteration of the loop, a
literal l to drop from v is chosen. If the assertion is UNSAT, we
can successfully drop l from v, and replace v with the UNSAT
assumptions in the query. However, if the assertion is SAT, l
is a required literal in v and we try dropping another literal.

Lemma 3. SHRINKCLAUSE removes all possible literals from
ĉ such that the assertion Si ∧ δ ⇒ ĉ′ is valid.

The violating clause may appear in future frames in R (due
to the propagation phase when checking M). The modification
is reflected in all occurrences of the clause. All such violating
clauses in Ri+1 are repaired.

Theorem 1. FRAMEREPAIR returns repaired frame R̂i+1 such
that Si ∧ δ ⇒ R̂′i+1 is valid.

The repaired frame R̂i+1 is added to the set of frames for N
at step i+1. Therefore, Si+1 = R̂i+1, and we continue with the
normal execution of IC3. Clauses are propagated from frames

Sj , for j ≤ i, to Si+1, which is then checked for intersection
with bad states and, if any are found, IC3 tries recursively
blocking them at earlier steps.

IV. EXPERIMENTAL ANALYSIS

We extensively experimentally analyze FuseIC3. We sum-
marize the setup used for the experiments, briefly detail our
benchmarks, and end with experimental results.

A. Setup
FuseIC3 is coded in C++ and uses MathSAT5 [11] as

the underlying SAT solver. It takes SMV models or AIGER
files as input. The IC3 part of FuseIC3 is based on the
description in [17] and ic3ia.1 We compare the performance
of FuseIC3 with typical IC3 (typ), and incremental IC3 (inc).
The algorithm for incremental IC3 is part of IBM’s RuleBase
model checker [3]. We coded inc based on the description
in [8] to the best of our understanding. All experiments
were performed on Iowa State University’s Condo Cluster
comprising of nodes having two 2.6GHz 8-core Intel E5-2640
processors, 128 GB memory, and running Enterprise Linux
7.3. Each model-checking run had exclusive access to a node.

B. Benchmarks
We evaluated FuseIC3 over a large collection of challenging

benchmarks. The benchmarks are derived from real-world case
studies and modified benchmarks from HWMCC 2015.

1) Air Traffic Controller (ATC) Models: are a large set
of 1,620 real-world models representing different possible
designs for NASA’s NextGen air traffic control (ATC) system
[19]. The set of models are generated from a contract-based,
parameterized NUXMV model. Each model is checked against
34 safety properties. The entire evaluation consists of 34
model-sets (one for each property) containing 1,620 models.

2) Selected Benchmarks from HWMCC 2015: We consid-
ered a total of 548 benchmark models from the single safety
property track [1]. Of the 548, 110 models were solved using
our implementation of IC3 within a timeout of 5 minutes.
To create a model-set, we generated 200 mutations of each
of the 110 benchmarks. The original model was mutated to
only modify the transition system, and not the safety property
implicit in the AIGER file; 1% of the assignments were
randomly modified. An assignment of the form g = g1∧g2 was
selected with probability 0.01 and changed to g = 0, g = 1,
g = ¬g1 ∧ g2, g = g1 ∧ ¬g2, g = ¬g1 ∧ ¬g2, g = g1 ∧ g2,
g = g1, g = ¬g1, g = g2, or g = ¬g2, with equal probability.
Therefore, the full evaluation consists of 110 model-sets, each
consisting of one property and 200 models.

3) Wheel Braking System (WBS) Models: are a set of
seven real-world models representing possible designs for the
Boeing AIR6110 wheel braking system [5]. Each model is
checked against ∼300 safety properties. However, the prop-
erties checked for each model are not the same. We evaluate
FuseIC3 using this benchmark to measure performance when
a model is checked against several related or similar properties.
Each model was checked using a timeout of 120 minutes.

1https://es-static.fbk.eu/people/griggio/ic3ia/

TABLE I
SUMMARY OF RESULTS FOR 34 SETS OF 1,620 MODELS EACH FOR NASA

AIR TRAFFIC CONTROL SYSTEM.

Algorithm Cumulative Time
in minutes

Median Speedup

v/s typ (avg) v/s inc (avg)

Typical IC3 (typ) 2502.70 - -
Incremental IC3 (inc) 2180.57 1.29 (1.3) -
FuseIC3 1683.53 1.75 (5.48) 1.34 (3.67)

C. Results

1) Air Traffic Controller (ATC) Models: Each of the 34
model-sets were checked using a timeout of 720 minutes per
algorithm. The models in a set were checked in random order.
Table I gives a summary of the results. FuseIC3 is median
1.75× (average 5.48×) faster compared to typical IC3, and
median 1.34× (average 3.67×) faster compared to incremental
IC3. On the other hand, incremental IC3 is median 1.29×
(average 1.3×) faster than typical IC3.

Fig. 7a shows time taken by the algorithms on each model-
set. FuseIC3 is almost always faster than typical IC3, and
incremental IC3. However, for some very small instances,
typical IC3 is faster; both incremental IC3 and FuseIC3
require a certain overhead in extracting information from the
last checker run. FuseIC3 tries minimizing the time spent in
exploring the common state space between models. In terms
of the IC3 algorithm, this relates to time spent in finding bad
states and blocking them at earlier steps (blocking phase).
Fig. 7b shows time taken by each algorithm in blocking
discovered bad states. FuseIC3 spends considerably less time
in the blocking phase compared to typical IC3 and incremental
IC3. Therefore, FuseIC3 is successful in reusing a major part
of the already-discovered state space between different checker
runs, a major requirement when checking large design spaces.
Fig. 7c shows the total number of calls made to the underlying
SAT solver by each algorithm. FuseIC3 makes fewer SAT calls
and takes less time to check each model-set. For small models,
FuseIC3 makes more SAT calls compared to typical IC3.

2) Benchmarks from HWMCC 2015: Each of the 110
model-sets were checked using a timeout of 120 minutes per
algorithm. The models in a set were checked in random order.
91 of 110 model-sets were solved by all algorithms within
the timeout. Incremental IC3 solved two more model-sets
compared to typical IC3, while FuseIC3 solved five more
compared to typical IC3. Table II gives a summary of results.

Fig. 8a shows time taken by the algorithms in checking
each benchmark model-set. FuseIC3 is median 1.75× (average
3.18×) faster than typical IC3, and median 1.72× (average
2.56×) faster than incremental IC3. Significant speedup is
achieved when checking model-sets containing large models
with FuseIC3. Performance for model-sets containing small
models is similar for all algorithms. Fig. 8b shows time spent
by each algorithm in blocking predecessors to bad states.

To estimate performance of FuseIC3 on model-sets with
varying degree of overlap among models, we picked the
bobtuint18neg benchmark from HWMCC 2015. 100

https://es-static.fbk.eu/people/griggio/ic3ia/

0 10 20 30 34
Property ID

100

101

102

C
he

ck
in

g
tim

e
(l

og
)

(a) Cumulative checking time per set (minutes)

0 10 20 30 34
Property ID

10−2

100

102

B
lo

ck
in

g
tim

e
(l

og
)

(b) Cumulative blocking time per set (minutes)

0 10 20 30 34
Property ID

101

102

103

104

#
SA

T
C

al
ls

(l
og

)

(c) Number of SAT calls per set

Fig. 7. Comparison between IC3 (×), incremental IC3 (+), and FuseIC3 (�) on NASA Air Traffic Control System models. There are a total of 34 properties.
1,620 models are checked per property. A point represents cumulative time taken to check all models for a property by an algorithm.

0 10 20 30 40 50 60 70 80 91
Model ID

10−2

10−1

100

101

102

C
he

ck
in

g
tim

e
(l

og
)

(a) Cumulative checking time per design space (minutes)

0 10 20 30 40 50 60 70 80 91
Model ID

10−3

10−1

101

B
lo

ck
in

g
tim

e
(l

og
)

(b) Cumulative blocking time per design space (minutes)

Fig. 8. Comparison between IC3 (×), incremental IC3 (+), and FuseIC3 (�) on 91 benchmarks from HWMCC 2015. Each model is converted to a model-set
containing 200 models, generated by 1% mutation of the original. A point represents cumulative time for checking all mutated versions of a model.

TABLE II
SUMMARY OF RESULTS FOR 91 OF 110 SETS OF 200 MODELS EACH FOR

SELECTED HWMCC 2015 BENCHMARKS.

Algorithm Cumulative Time
in minutes

Median Speedup

v/s typ (avg) v/s inc (avg)

Typical IC3 (typ) 1024.60 - -
Incremental IC3 (inc) 1026.30 1.04 (1.07) -
FuseIC3 545.31 1.75 (3.18) 1.72 (2.56)

model-sets with varying degrees of mutation, between 0.5%
to 50%, of the original model were generated. Each model-
set consists of 100 models each. Each set was checked
using a timeout of 60 minutes per algorithm. Model-sets
corresponding to higher mutation values time out (SAT solvers
are tuned for practical designs and random mutations create
SAT instances that don’t always correspond to real designs).
However, FuseIC3 is able to verify more models in a set for
almost all mutation percentages. Fig. 9 gives a summary of the
adjusted relative speedup between checking using FuseIC3
versus typical IC3. Even at higher mutation percentages,
FuseIC3 is significantly faster.

3) Wheel Braking System Models: A model in the design
space was checked against several properties, differently from
the other benchmarks that checked all models in a set with
the same property. Each model was checked using a timeout
of 120 minutes. The properties for each model were checked

0 10 20 30 40 50
Mutation Percentage

0

1

2

3

4

R
el

at
iv

e
Sp

ee
du

p

Fig. 9. Adjusted relative speedup between checking using FuseIC3 versus
typical IC3. 100 models are generated for every mutation percentage between
0.5% to 50% in steps of 0.5%, and are checked against the same property.

in random order. Table III gives a summary of the results.
Compared to other benchmarks, FuseIC3 achieves a smaller

speedup when checking the WBS models. Although some
properties being checked for the models are similar, i.e., the
bad states representing the negation of the property overlap,
the order in which they are checked greatly influences the
performance of FuseIC3. In the random ordering used for the
experiment, FuseIC3 is able to reuse frames without any repair
(the same model is being checked), however, it spends a lot
of time in blocking predecessors to bad states. Nevertheless, it
is faster than checking all properties on a model using typical

TABLE III
COMPARISON BETWEEN TYPICAL IC3, INCREMENTAL IC3, AND FUSEIC3

FOR AIR6110 WHEEL BRAKING SYSTEM (TIME IS IN MINUTES).

Model

Typical IC3 Incremental IC3 FuseIC3

Time Time v/s typ Time v/s typ v/s inc

M1 4.36 5.02 0.87 3.72 1.17 1.35
M2 15.78 16.65 0.95 14.80 1.07 1.13
M3 12.43 13.48 0.92 11.24 1.11 1.20
M4 12.45 13.66 0.91 11.09 1.12 1.23
M5 15.92 17.04 0.93 14.71 1.08 1.16
M6 16.85 17.79 0.95 17.04 0.99 1.04
M7 12.95 13.67 0.95 12.12 1.07 1.13

90.73 97.31 0.95 84.72 1.11 1.20
(total) (total) (median) (total) (median) (median)

IC3. On the other hand, incremental IC3 is slower compared
to typical IC3. It is able to extract the minimal inductive
invariant (invariant finder) instantly, however, suffers from the
same problem as FuseIC3. Incremental IC3, and FuseIC3 will
benefit if similar properties are checked in order.

V. CONCLUSIONS AND FUTURE WORK

FuseIC3, a SAT-query efficient algorithm, significantly
speeds up model checking of large design spaces. It extends
IC3 to minimize time spent in exploring the state space in
common between related models. FuseIC3 spends less time
during the blocking phase (Fig. 7b and Fig. 8b) due to success
in reusing several clauses, has to learn fewer new clauses, and
makes fewer SAT queries. The smallest salvageable unit in
FuseIC3 is a clause; due to this granularity, FuseIC3 is able
to selectively reuse stored information and is faster than the
state-of-the-art algorithms that rely on reusing a coarser CNF
invariant [8]. FuseIC3 is industrially applicable and scalable
as witnessed by its superior performance on a real-life set
of 1,620 NASA air traffic control system models (achieving
an average 5.48× speedup), and benchmarks from HWMCC
2015 (achieving an average 3.18× speedup). Despite spending
significant time in learning new clauses for the Boeing wheel
braking system models, FuseIC3 is still faster than the previous
best algorithm, typical IC3, when checking properties in
random order; FuseIC3’s performance will improve if similar
properties are checked in order. We contribute to the available
benchmarks by releasing all artifacts for reproducibility.

Ordering of models and properties in the design space
improves the performance of FuseIC3, much like variable or-
dering in BDDs. Heuristics for optimizing model ordering are
a promising topic for future work. Preprocessing the models
and properties, based on knowledge about the design space,
before checking them with FuseIC3 may remove redundancies
in the design space. We plan to extend FuseIC3 to checking
liveness properties by using it is a safety checker [12]. We also
to plan to investigate extending FuseIC3 to reuse intermediate
results of SAT queries, generalized clauses, and IC3 proof
obligations across models. Finally, since checking large design
spaces is becoming commonplace, we plan to develop more
model-set benchmarks and make them publicly available.

REFERENCES

[1] “HWMCC 2015,” http://fmv.jku.at/hwmcc15/.
[2] C. Bauer, K. Lagadec, C. Bès, and M. Mongeau, “Flight control system

architecture optimization for fly-by-wire airliners,” J. Guidance, Control,
and Dynamics, vol. 30, no. 4, 2007.

[3] I. Beer, S. Ben-David, C. Eisner, and A. Landver, “RuleBase: An
industry-oriented formal verification tool,” in DAC, 1996.

[4] S. Ben-David, B. Sterin, J. M. Atlee, and S. Beidu, “Symbolic model
checking of product-line requirements using SAT-based methods,” in
ICSE, vol. 1, 2015, pp. 189–199.

[5] M. Bozzano, A. Cimatti, A. Fernandes Pires, D. Jones, G. Kimberly,
T. Petri, R. Robinson, and S. Tonetta, “Formal design and safety analysis
of AIR6110 wheel brake system,” in CAV, 2015.

[6] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
VMCAI, 2011, pp. 70–87.

[7] A. R. Bradley, “Understanding IC3,” in SAT, 2012, pp. 1–14.
[8] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental

Formal Verification of Hardware,” in FMCAD, 2011, pp. 135–143.
[9] H. Chockler, O. Kupferman, and M. Y. Vardi, “Coverage metrics for

temporal logic model checking,” FMSD, vol. 28, no. 3, pp. 189–212,
2006.

[10] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Parameter synthesis
with IC3,” in FMCAD, 2013, pp. 165–168.

[11] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
MathSAT5 SMT solver,” in TACAS, 2013, pp. 93–107.

[12] K. Claessen and N. Sörensson, “A liveness checking algorithm that
counts,” in FMCAD, 2012, pp. 52–59.

[13] A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens,
“Model checking software product lines with snip,” (STTT), pp. 1–24,
2012.

[14] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and
J.-F. Raskin, “Featured transition systems: Foundations for verifying
variability-intensive systems and their application to ltl model checking,”
IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1069–1089, 2013.

[15] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, “Symbolic
model checking of software product lines,” in ICSE, 2011, pp. 321–
330.

[16] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in ICSE, 2010, pp. 335–344.

[17] N. Een, A. Mishchenko, and R. Brayton, “Efficient Implementation of
Property Directed Reachability,” in FMCAD, 2011, pp. 125–134.

[18] E. A. Emerson and V. Kahlon, “Reducing model checking of the many
to the few,” in CADE, 2000, pp. 236–254.

[19] M. Gario, A. Cimatti, C. Mattarei, S. Tonetta, and K. Y. Rozier,
“Model checking at scale: Automated air traffic control design space
exploration,” in CAV, 2016.

[20] A. Griggio and M. Roveri, “Comparing Different Variants of the IC3
Algorithm for Hardware Model Checking,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 35, no. 6, pp. 1026–1039, Jun 2016.

[21] P. James, F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider,
and H. Treharne, “On modelling and verifying railway interlockings:
Tracking train lengths,” Science of Computer Programming, vol. 96,
no. 3, 2014.

[22] J. Marques-Silva, “Interpolant learning and reuse in sat-based model
checking,” Theoretical Computer Science, vol. 174, no. 3, pp. 31 – 43,
2007.

[23] C. Mattarei, A. Cimatti, M. Gario, S. Tonetta, and K. Y. Rozier,
“Comparing different functional allocations in automated air traffic
control design,” in FMCAD, 2015.

[24] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne,
“Defining and model checking abstractions of complex railway models
using CSP—B,” in HVC, 2013.

[25] P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and
T. Bienmüller, “Incremental bounded model checking for embedded
software,” Formal Aspects of Computing, 2016.

[26] F. Somenzi and A. R. Bradley, “IC3: Where Monolithic and Incremental
Meet,” in FMCAD, 2011, pp. 3–8.

[27] B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert,
G. Janssen, R. K. Ranjan, and F. Somenzi, “A performance study of
bdd-based model checking,” in FMCAD, 1998, pp. 255–289.

[28] G. Yang, M. B. Dwyer, and G. Rothermel, “Regression model checking,”
in ICSM, 2009, pp. 115–124.

http://fmv.jku.at/hwmcc15/

	Introduction
	Preliminaries
	Definitions
	Overview of IC3
	SAT with Assumptions
	Notation

	Algorithm
	Intuition
	Overview
	Basic Checks
	Frame Repair

	Experimental Analysis
	Setup
	Benchmarks
	Air Traffic Controller (ATC) Models
	Selected Benchmarks from HWMCC 2015
	Wheel Braking System (WBS) Models

	Results
	Air Traffic Controller (ATC) Models
	Benchmarks from HWMCC 2015
	Wheel Braking System Models

	Conclusions and Future Work
	References
	Appendix A: Proofs
	Appendix B: Complete Experimental Results

