FuseIC3 An Algorithm for Checking Large Design Spaces

Rohit Dureja and Kristin Yvonne Rozier

Motivation	Preliminaries	Algorithm	Results
●000	00000	00000	00000

What is a Design Space?

IOWA STATE UNIVERSITY Rohit Dureja & Kristin Y. Rozier FuseIC3: An Algorithm for Checking Large Design Spaces

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Airspace Allocat	tion		

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Airspace Allocat	tion		

Rohit Dureja & Kristin Y. Rozier FuseIC3: An A

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Airspace Allocat	tion		

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Airspace Allocat	tion		

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Airspace Allocat	tion		

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Airspace Allocat	tion		

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Airspace Allocat	tion		

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Airspace Allocat	tion		

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Airspace Alloca	tion		

Lots of design choices!

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000

What is a Design Space?

IOWA STATE UNIVERSITY Rohit Dureja & Kristin Y. Rozier FuseIC3: An Algorithm for Checking Large Design Spaces

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000

What is a Design Space?

Set of Design Choices for a System.

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
000	00000	00000	00000
Design Problem			

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Design Problem			

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Design Problem			

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Design Problem			

IOWA STATE UNIVERSITY

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Design Problem			

Model checking!

Motivation	Preliminaries	Algorithm	Results
0000	●0000	00000	00000
Classical Model	Checking of a De	sign Space	

Motivation	Preliminaries	Algorithm	Results
0000	●0000	00000	00000
Classical Model	Checking of a Des	sign Space	

IOWA STATE UNIVERSITY

For every $M \in \mathcal{M}$ and $\varphi \in \mathcal{P}$ check if $M \models \varphi$?

For every $M \in \mathcal{M}$ and $\varphi \in \mathcal{P}$ check if $M \models \varphi$?

Set of Properties \mathcal{P}

- Inefficient for large design spaces
 - may not scale to handle combinatorial size of the design space.

For every $M \in \mathcal{M}$ and $\varphi \in \mathcal{P}$ check if $M \models \varphi$?

- bet of Hoperties /
- Inefficient for large design spaces
 - may not scale to handle combinatorial size of the design space.

Can we do better?

Motivation	Preliminaries	Algorithm	Results
0000	0000	00000	00000
Related Work			

1 Reusing BDD variable orderings

 $x_1 < x_2 < x_3$

IOWA STATE UNIVERSITY

(Beer et al., 1996; Yang et al., 1998)

Motivation	Preliminaries	Algorithm	Results
0000	0000	00000	00000
Related Work			

1 Reusing BDD variable orderings

IOWA STATE UNIVERSITY

FuseIC3 is SAT-based

(Beer et al., 1996; Yang et al., 1998)

Rohit Dureja & Kristin Y. Rozier

Motivation	Preliminaries	Algorithm	Results
0000	0000	00000	00000
Rolated W	lork.		
Related W	UIK		

2 SAT solver optimizations and clause reuse

IOWA STATE UNIVERSITY

(Marques-Silva, 2007; Schrammel et al., 2016; Chockler et al., 2011; Khasidashvili et al., 2006; Khasidashvili & Nadel, 2012)

Motivation	Preliminaries	Algorithm	Results
0000	0000	00000	00000
Rolated W	lork.		
Related W	UIK		

2 SAT solver optimizations and clause reuse

IOWA STATE UNIVERSITY

FuseIC3 reuses model checking artifacts

(Marques-Silva, 2007; Schrammel et al., 2016; Chockler et al., 2011; Khasidashvili et al., 2006; Khasidashvili & Nadel, 2012)

00000

3 Software product line verification

IOWA STATE UNIVERSITY

(Ben-David et al., 2015; Classen et al., 2012, 2011, 2010; Dimovski et al., 2015)

Motivation	Preliminaries	Algorithm	Results
0000	0000	00000	00000
Related Work			

3 Software product line verification

IOWA STATE UNIVERSITY

FuseIC3 does not require custom modeling

(Ben-David et al., 2015; Classen et al., 2012, 2011, 2010; Dimovski et al., 2015)

Motivation	Preliminaries	Algorithm	Results
0000	0000	00000	00000
High-level View	of IC3/PDR		

Model $M = (\Sigma, Q_M, Q_{0_M}, \delta_M)$ and Safety property φ

Motivation	Preliminaries	Algorithm	Results
0000	0000	00000	00000
High-level View	of IC3/PDR		

Model $M = (\Sigma, Q_M, Q_{0_M}, \delta_M)$ and Safety property φ

Frame Invariants

- 1. for i > 0, R_i is CNF, over-approximated states reachable in up to *i* steps
- 2. $R_{i+1} \subseteq R_i$ (monotonic)
- 3. $R_i \wedge \delta_M \models R'_{i+1}$

IOWA STATE UNIVERSITY

4. for i < x, $R_i \models \varphi$

Frame Invariants

- 1. for i > 0, R_i is CNF, over-approximated states reachable in up to *i* steps
- 2. $R_{i+1} \subseteq R_i$ (monotonic)
- 3. $R_i \wedge \delta_M \models R'_{i+1}$

IOWA STATE UNIVERSITY

4. for i < x, $R_i \models \varphi$

Model $M = (\Sigma, Q_M, Q_{0_M}, \delta_M)$ and Safety property φ

Frame Invariants

- 1. for i > 0, R_i is CNF, over-approximated states reachable in up to *i* steps
- 2. $R_{i+1} \subseteq R_i$ (monotonic)
- 3. $R_i \wedge \delta_M \models R'_{i+1}$

IOWA STATE UNIVERSITY

4. for i < x, $R_i \models \varphi$

Motivation	Preliminaries	Algorithm	Results
0000	0000	00000	00000
High-level View	of IC3/PDR		

Model $M = (\Sigma, Q_M, Q_{0_M}, \delta_M)$ and Safety property φ

Frame Invariants

1. for i > 0, R_i is CNF, over-approximated states reachable in up to *i* steps

2.
$$R_{i+1} \subseteq R_i$$
 (monotonic)

3.
$$R_i \wedge \delta_M \models R'_{i+1}$$

4. for
$$i < x$$
, $R_i \models \varphi$

Frame Invariants

1. for i > 0, R_i is CNF, over-approximated states reachable in up to *i* steps

2.
$$R_{i+1} \subseteq R_i$$
 (monotonic)

3.
$$R_i \wedge \delta_M \models R'_{i+1}$$
 Core Idea of FuseIC3

4. for
$$i < x$$
, $R_i \models \varphi$

Motivation 0000	Preliminaries	Algorithm 00000	Results 00000
Overview o	f FuseIC3		
Model $M = (\Sigma, Q$	(M_M, Q_{0_M}, δ_M) and Safety prope	rty φ	

Frame Sequence R

Invariant $\mathcal I$

 $\mathbf{\mathcal{L}}$ $\mathbf{\mathcal{L}}$ $\mathbf{\mathcal{L}}$ Error Trace \mathcal{E}

Model $N = (\Sigma, Q_N, Q_{0_N}, \delta_N)$ and Safety property φ

Model $N = (\Sigma, Q_N, Q_{0_N}, \delta_N)$ and Safety property φ

IOWA STATE UNIVERSITY

Goal: Compute frame sequence S for model N

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Assumpt	tions and Intuition		

Assumption 1

IOWA STATE UNIVERSITY

The different models in the design space are related, i.e., have overlapping reachable states.

Assure tions	and Industrian		
0000	00000	00000	00000
Motivation	Preliminaries	Algorithm	Results

Assumptions and Intuition

Assumption 1

The different models in the design space are related, i.e., have overlapping reachable states.

Assumption 2

IOWA STATE UNIVERSITY

The models in the design space are checked sequentially.

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Assumptions a	and Intuition		

Set of related models $\{M_1, M_2, M_3, M_4\}$ Safety property φ

Assumption 1

The different models in the design space are related, i.e., have overlapping reachable states.

Assumption 2

IOWA STATE UNIVERSITY

The models in the design space are checked sequentially.

Reachable State Space

Rohit Dureja & Kristin Y. Rozier

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Assumptions a	and Intuition		

Set of related models $\{M_1, M_2, M_3, M_4\}$ Safety property φ

Assumption 1

The different models in the design space are related, i.e., have overlapping reachable states.

Assumption 2

IOWA STATE UNIVERSITY

The models in the design space are checked sequentially.

Reachable State Space

Rohit Dureja & Kristin Y. Rozier

1. Check M_1 with φ

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Assumptions a	and Intuition		

Set of related models $\{M_1, M_2, M_3, M_4\}$ Safety property φ

Assumption 1

The different models in the design space are related, i.e., have overlapping reachable states.

Assumption 2

IOWA STATE UNIVERSITY

The models in the design space are checked sequentially.

Reachable State Space

1. Check M_1 with $arphi o M_1 \models arphi$

Rohit Dureja & Kristin Y. Rozier

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Assumption	ns and Intuition		

Set of related models $\{M_1, M_2, M_3, M_4\}$ Safety property φ

Assumption 1

The different models in the design space are related, i.e., have overlapping reachable states.

Assumption 2

IOWA STATE UNIVERSITY

The models in the design space are checked sequentially.

Reachable State Space

2. Check M_2 with $\varphi \longrightarrow$

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Assumptions an	d Intuition		

Set of related models $\{M_1, M_2, M_3, M_4\}$ Safety property φ

Assumption 1

The different models in the design space are related, i.e., have overlapping reachable states.

Assumption 2

IOWA STATE UNIVERSITY

The models in the design space are checked sequentially.

Reachable State Space

Already explored and verified M_3 Bad States M_1 M_2 M_4 1. Check M_1 with $\varphi \longrightarrow M_1 \models \varphi$ 2. Check M_2 with $\varphi \longrightarrow$ When checking M₂, FuseIC3 reuses the already explored and verified state space of M₁ and only checks

Rohit Dureja & Kristin Y. Rozier

FuseIC3: An Algorithm for Checking Large Design Spaces

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Assumption	s and Intuition		

Set of related models $\{M_1, M_2, M_3, M_4\}$ Safety property φ

The different models in the design space are related, i.e., have overlapping reachable states.

Assumption 2

IOWA STATE UNIVERSITY

The models in the design space are checked sequentially.

Reachable State Space

Instant Verification

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

FuseIC3: An Algorithm for Checking Large Design Spaces

Frame Sequence S

IOWA STATE UNIVERSITY

We want to compute S_1 using known information

Rohit Dureja & Kristin Y. Rozier FuseIC3: An Algorithm for Checking Large Design Spaces

We want to compute S_1 using known information

Frame Sequence S

 $S_0 \wedge \delta_N \rightarrow R'_1?$

We want to compute S_1 using known information

Frame Sequence S

$$S_0 \wedge \delta_N \to R'_1?$$

We want to compute S_1 using known information

Frame Sequence S

 $S_0 \wedge \delta_N \to R'_1?$

Frame Sequence S

We want to compute S_1 using known information

 $S_0 \wedge \delta_N \to R'_1?$

Repair R_1

IOWA STATE UNIVERSITY

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \rightarrow \hat{R_1}'$ is valid

 $\overbrace{S_1}^{\delta_N} \overbrace{S_1}^{P}$ Frame Sequence S

IOWA STATE UNIVERSITY

R₁

FuseIC3: An Algorithm for Checking Large Design Spaces

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \rightarrow \hat{R_1}'$ is valid

Rohit Dureja & Kristin Y. Rozier

 c_2 R_1 contains clauses c_3 R_1 c_1

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \rightarrow \hat{R_1}'$ is valid

Rohit Dureja & Kristin Y. Rozier

FuseIC3: An Algorithm for Checking Large Design Spaces

Rohit Dureja & Kristin Y. Rozier FuseIC3: An Alg

IOWA STATE UNIVERSITY

FuseIC3: An Algorithm for Checking Large Design Spaces

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \rightarrow \hat{R_1}'$ is valid

Rohit Dureja & Kristin Y. Rozier

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \rightarrow \hat{R_1}'$ is valid

Rohit Dureja & Kristin Y. Rozier

Repair R_1 to \hat{R}_1 s.t. $S_0 \wedge \delta_N \to \hat{R}_1'$ is valid

Rohit Dureja & Kristin Y. Rozier

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \to \hat{R_1}'$ is valid

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \rightarrow \hat{R_1}'$ is valid

IOWA STATE UNIVERSITY

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \rightarrow \hat{R_1}'$ is valid

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \to \hat{R_1}'$ is valid

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

$$S_0 \wedge \delta_N \to \hat{R_1}'$$

Repair R_1 to $\hat{R_1}$ s.t. $S_0 \wedge \delta_N \rightarrow \hat{R_1}'$ is valid

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

$$N \models \varphi$$

Invariant: $S_{i+1} \equiv S_i$

Rohit Dureja & Kristin Y. Rozier FuseIC3: An Algorithm for Checking Large Design Spaces

IOWA STATE UNIVERSITY

 $N \models \varphi$ Invariant: $S_{i+1} \equiv S_i$ Update last known 1. Frame Sequence

IOWA STATE UNIVERSITY

 $N \not\models \varphi$

Error Trace: \mathcal{E}_N

IOWA STATE UNIVERSITY

 $N \not\models \varphi$

Error Trace: \mathcal{E}_N Update last known 1. Frame Sequence

Ready for next model

IOWA STATE UNIVERSITY

Rohit Dureja & Kristin Y. Rozier FuseIC3: An Algorithm for Checking Large Design Spaces

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	0000
Experiment Setu	ıp		

• FuseIC3 is coded in C++ and uses MathSAT5 as SAT solver.

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	•0000
Experiment Setu	ıp		

- FuseIC3 is coded in C++ and uses MathSAT5 as SAT solver.
- Core IC3 implementation based on ic3ia¹

Source code available at http://temporallogic.org/research/FMCAD17

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Experiment	Setup		

- FuseIC3 is coded in C++ and uses MathSAT5 as SAT solver.
- Core IC3 implementation based on ic3ia¹
- Other algorithms considered
 - 1 Typical IC3 (typ) (Een et al., 2011)
 - 2 Incremental IC3 (inc) (Chockler et al., 2011)

Source code available at http://temporallogic.org/research/FMCAD17

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	0000
Experiment	: Setup		

- FuseIC3 is coded in C++ and uses MathSAT5 as SAT solver.
- Core IC3 implementation based on ic3ia¹
- Other algorithms considered
 - 1 Typical IC3 (typ) (Een et al., 2011)
 - 2 Incremental IC3 (inc) (Chockler et al., 2011)
- Benchmarks evaluated
 - NASA NextGen Air Traffic Control (ATC) System (Gario et al., 2016)
 - 2 Selected benchmarks from HWMCC 2015
 - Each model was randomly mutated to generate a model-set.
 - **3** Boeing AIR 6110 Wheel Braking System (WBS) (Bozzano et al., 2015)

Source code available at

http://temporallogic.org/research/FMCAD17

Motivation 0000	Preliminaries 00000		Algorithm 00000		Results
NASA ATC	C Benchman	rk			
		$1,\!620$ N	Iodels		
		and and		and the second s	

Motivation 0000		Preliminari 00000	es		Algorithm 00000	Results 0000
NASA	ATC Be	nchma	ark			
	Safety	_	1,6	620 Mc	dels	

FuseIC3: An Algorithm for Checking Large Design Spaces

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

FuseIC3: An Algorithm for Checking Large Design Spaces

Rohit Dureja & Kristin Y. Rozier

FuseIC3: An Algorithm for Checking Large Design Spaces

Motivation	Preliminaries	Algorithm	
0000	00000	00000	
NASA AT	C Benchmark		

Results 00000

Typical IC3 Incremental IC3 10^{3} 10^{2} 10^{1}

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Selected H	WMCC Benchmar	ks	

Original Benchmark

Rohit Dureja & Kristin Y. Rozier

FuseIC3: An Algorithm for Checking Large Design Spaces

Selected HWMCC Benchmarks

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

FuseIC3: An Algorithm for Checking Large Design Spaces

Results

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Boeing WBS E	Benchmark		

Motivation 0000	Preliminaries 00000	Algorithm 00000	Results ○00●○
Boeing WBS	Benchmark		
	~30	0 Safety Properties	
	B B	1 1	B
7 models			

Rohit Dureja & Kristin Y. Rozier

IOWA STATE UNIVERSITY

FuseIC3: An Algorithm for Checking Large Design Spaces

Motivation	Preliminarie	es Algor	tithm Results
0000	00000	000	
		1	

Boeing WBS Benchmark

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Discussion			

• FuseIC3 is an efficient algorithm for checking design spaces

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Discussion			
DISCUSSION			

- FuseIC3 is an efficient algorithm for checking design spaces
 - Incremental can be used for
 - regression verification,
 - coverage computation, and
 - product line verification.

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Discussion			
DISCUSSION			

- FuseIC3 is an efficient algorithm for checking design spaces
 - Incremental can be used for

- regression verification,
- coverage computation, and
- product line verification.

• General & scalable - does not require special modeling formalisms.

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Discussion			

- FuseIC3 is an efficient algorithm for checking design spaces
 - Incremental can be used for
 - regression verification,
 - coverage computation, and
 - product line verification.

- General & scalable does not require special modeling formalisms.
- Reuses information IC3 frames, invariants, and error traces.

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Discussion			

- FuseIC3 is an efficient algorithm for checking design spaces
 - Incremental can be used for
 - regression verification,
 - coverage computation, and
 - product line verification.
 - General & scalable does not require special modeling formalisms.
 - Reuses information IC3 frames, invariants, and error traces.
- Future Work

- ► How can we use intermediate SAT results to speed-up FuseIC3?
- What model/property ordering heuristics may improve performance?
- Is it possible to use FuseIC3 for liveness checking?

Motivation	Preliminaries	Algorithm	Results
0000	00000	00000	00000
Discussion			

- FuseIC3 is an efficient algorithm for checking design spaces
 - Incremental can be used for
 - regression verification,
 - coverage computation, and
 - product line verification.
 - General & scalable does not require special modeling formalisms.
 - Reuses information IC3 frames, invariants, and error traces.
- Future Work

- ▶ How can we use intermediate SAT results to speed-up FuseIC3?
- What model/property ordering heuristics may improve performance?
- Is it possible to use FuseIC3 for liveness checking?

Thank You!

http://temporallogic.org/research/FMCAD17

- Beer, I., Ben-David, S., Eisner, C., & Landver, A. (1996). RuleBase: An industry-oriented formal verification tool. In *Dac.*
- Ben-David, S., Sterin, B., Atlee, J. M., & Beidu, S. (2015). Symbolic model checking of product-line requirements using SAT-based methods. In *Icse* (Vol. 1, pp. 189–199).
- Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri, T., ... Tonetta, S. (2015). Formal design and safety analysis of AIR6110 wheel brake system. In *CAV*.
- Chockler, H., Ivrii, A., Matsliah, A., Moran, S., & Nevo, Z. (2011). Incremental Formal Verification of Hardware. In *Fmcad* (pp. 135–143).
- Classen, A., Cordy, M., Heymans, P., Legay, A., & Schobbens, P.-Y. (2012). Model checking software product lines with snip. (*STTT*), 1–24.
- Classen, A., Heymans, P., Schobbens, P.-Y., & Legay, A. (2011). Symbolic model checking of software product lines. In *Icse* (pp. 321–330).
- Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., & Raskin, J.-F. (2010). Model checking lots of systems: efficient verification of temporal properties in software product lines. In *Icse* (pp.