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Abstract—From equivalence checking to functional verification
to design-space exploration, industrial verification tasks entail
checking a large number of properties on the same design. State-
of-the-art tools typically solve all properties concurrently, or
one-at-a-time. They do not optimally exploit subproblem sharing
between properties, leaving an opportunity to save considerable
verification resource via concurrent verification of properties
with nearly identical cone of influence (COI). These high-affinity
properties can be concurrently solved; the verification effort
expended for one can be directly reused to accelerate the veri-
fication of the others, without hurting per-property verification
resources through bloating COI size. We present a near-linear
runtime algorithm for partitioning properties into provably high-
affinity groups for concurrent solution. We also present an
effective method to partition high-structural-affinity groups using
semantic feedback, to yield an optimal multi-property localization
abstraction solution. Experiments demonstrate substantial end-
to-end verification speedups through these techniques, leveraging
parallel solution of individual groups.

I. INTRODUCTION

The formal verification of a hardware and/or software design
often mandates checking a large number of properties. For
example, equivalence checking compares pairwise equality
of each design output across two designs, and entails a
distinct property per output. Functional verification checks
designs against a large number of properties ranging from low-
level assertions to high-level encompassing properties. Design-
space exploration via model checking [16] verifies multiple
properties against competing system designs differing in core
capabilities or assumptions.

Each property has a distinct minimal cone of influence
(COI), or fanin logic of the signals referenced in that property
(Fig. 1a). Verification of a set of properties often entails
exponential complexity with respect to the size of its collective
COI. Concurrent verification of multiple properties may thus
be significantly slower than solving these properties one-at-a-
time, in that each property of the group may add unique fanin
logic to the collective COI (Fig. 1b). Conversely, sometimes
two or more properties share nearly-identical COIs (Fig. 1c).
Concurrent verification of high-affinity properties may save
considerable verification resource, as the effort expended for
one can be directly reused for the others without significantly
slowing the verification of any property within that group
(e.g., reusing reachability clauses [5, 22], and abstractions in
localization [1] across properties in a group).

Despite the prevalence of multi-property testbenches, little
research has addressed the problem of optimal grouping or
clustering of properties into high-affinity groups. Selective
past work [7, 8] has experimentally demonstrated that ideal
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Fig. 1. Cone-of-influence of high- and low- affinity properties.

grouping may save substantial verification resource. However,
no scalable online property grouping procedure has been
provided; this potential was illustrated as a proof-of-concept
using computationally-prohibitive offline grouping algorithms
with undisclosed runtime. A significant need thus remains
for an effective solution of determining which high-affinity
properties should be concurrently solved. To ensure overall
scalability, it is essential that such a property-partitioning
solution be as close to linear runtime as possible with respect
to the number of properties, otherwise the grouping effort itself
may severely degrade overall verification resource comprising
grouping plus subsequent verification of the identified groups.

Contributions: We present a near-linear runtime, fully-
automated algorithm to partition properties into provably high-
affinity groups based on structural COI similarity. COI support
information is maintained as bitvectors [9], and grouping is
performed in three configurable levels based on: identical
COI, strongly-connected components (SCC) in the COI, and
Hamming distance. The properties in each high-affinity group
are verified concurrently; each group may be independently
verified in parallel, using arbitrary solver algorithms. We also
present an algorithm to semantically refine high-structural-
affinity groups in a localization abstraction framework, offer-
ing the first optimized multi-property localization solution, to
our knowledge. Our partitioning requires negligible resources
even on the largest problems, while offering substantial veri-
fication speedups as demonstrated by extensive experiments.

A. Related Work

Much prior work has addressed methods to incrementally
reuse information across muliple properties to accelerate spe-
cific algorithms. E.g., incremental SAT across proofs of dif-
ferent properties [20, 21], and reusing verification by-products
like invariants [13] and interpolants [24], can accelerate the
verification of high-affinity properties.

Methods to group properties based on high-level design
descriptions extract similarity criteria from high-level informa-
tion unavailable in low-level designs and benchmark formats



such as AIGs [11]. The framework of local and global
proofs [18] has been used to derive a “debugging set” of
properties to fix before verifying others, implying a property
ordering but not a partitioning for minimal collective resource.
LTL satisfiability checking has been used to establish logical
dependencies between properties [14] to dynamically reduce
verification resource; however, this work requires a quadratic
number of resource-intensive comparisons.

The work most similar to ours is a property-clustering
procedure based on COI similarity [7, 8]. While a similar
goal, their solution requires a quadratic number of comparisons
between properties, rendering it prohibitively expensive on
large testbenches. Their experiments do not disclose grouping
resource, only subsequent verification speedup. Moreover, this
generic clustering approach requires the number of desired
groups as an algorithmic parameter. This metric is impossible
to predict in practice; it is far superior to allow affinity analysis
to automatically determine the optimal number of groups.

II. PRELIMINARIES

A. Definitions

The logic design under verification is represented as a
netlist. A netlist contains a directed graph with gates rep-
resented as vertices, and interconnections between vertices
represented as edges. Every gate has an associated function:
constants, primary inputs, combinational logic such as AND
gates, and sequential logic such as registers. Registers each
have two associated gates that represent their next-state func-
tion, and their initial-value function. Semantically, the value
of the register at time “0” equals the value of the initial-value
function gate at time “0”, and the value of the register at time
“i+1” equals that of the next-state function gate at time “i”.

Certain gates are labeled as properties, formed through stan-
dard synthesis of the relevant property specification language.
The fanin of a property refers to the set of gates in the netlist
which may be reached by traversing the netlist edges backward
from the property gate. This fanin cone is called the cone-
of-influence (COI) of the property. The registers and inputs in
the COI are called support variables. The number of support
variables in the COI is the COI size.

We say that a strongly connected component (SCC) in the
netlist is a set of interconnected gates such that there is a non-
empty directed path between every pair of gates in the same
SCC. In particular a primary input does not belong to any SCC,
and in a well-formed SCC every directed cycle has at least one
register because a netlist must be free of combinational cycles.
The number of registers in a SCC is its weight

B. Cone-of-Influence Computation

Support variable information may be represented as an
indexed array of Boolean values, or bitvector, per property.
Fig. 2 gives a high-level procedure to compute a support
bitvector for a property p. Every support variable in the netlist
N is indexed to an unique position in the bitvector, and
index(v) returns that index for variable v. The function fanin(p)
recursively computes the fanin structure, or COI, of the gate

support bitvector (Property p, Netlist N )
1: Bitvector bv
2: for each support variable v ∈ N :
3: unsigned i = index(v) # index of variable’s bit in bv
4: if v ∈ fanin(p) : bv[i] = 1 else bv[i] = 0

5: return bv

Fig. 2. High-level procedure to compute support variable information for a
property. Every variable is uniquely indexed into the bitvector.

corresponding to property p. If a support variable v is in the
fanin of property p, then the index(v)’th bit is set to “1” in
the bitvector; otherwise, is set to “0”. The length of such a
bitvector is equal to the total number of support variables in
the netlist, and all bitvectors have the same length. The COI
size of the property is the number of bits set to “1”, and can
be computed using fast population counting algorithms [31].

The bitvectors can be packed by representing every SCC as
a single weighted support variable; SCC bits have weight equal
to the SCC weight, while others have unit-weight. The COI
size of the property equals the weighted sum of the bits set to
“1”. Note that the choice of whether or not to represent SCCs
as a single bit does not affect the resulting support size. Unless
stated otherwise, a “support bitvector” is assumed packed.

Practically, it is far too computationally expensive to walk
the fanin cone of every property independently. Instead, the
netlist may be traversed once in a topological manner, com-
puting intermediate support bitvectors for internal gates [9].
E.g., for an AND gate a1 with incoming edges i1 and i2, the
intermediate bitvector for a1 is simply the disjunction over the
bitvectors for i1 and i2. For more details on support bitvector
computation and optimizations, we refer the reader to [9].

C. Property Affinity

The unpacked bitvectors for every property can be analyzed
to determine affinity among the properties. We use “Hamming
distance” as an affinity measure; high-affinity properties have
nearly-identical bitvectors. The affinity between properties p1
and p2 with unpacked bitvectors bv1 and bv2 is:

0 ≤ affinity(p1, p2) = 1− hamming(bv1, bv2)
length(bv1)

≤ 1.0

where hamming(bv1, bv2) is the Hamming distance between
the unpacked bitvectors, and length(bv1) is the number of
support variables in the netlist (identical for every bitvector).
Let V1 and V2 be the set of support variables in the COI of
p1 and p2, respectively. Note that hamming(bv1, bv2) equals
(|V1 ∪ V2| − |V1 ∩ V2|) and length(bv1) ≥ |V1 ∪ V2|.

D. Group Center and Grouping Quality

A property p is selected in a group g that represents the
group’s center, or representative property, and is denoted as
g∗. The quality of a group g, denoted Q(g), is the minimum
affinity between any pair of properties in g, i.e.,

Q(g) = min({affinity(pi, pj) | ∀pi, pj ∈ g})

A quality of t implies that unpacked bitvectors, of length l, for
properties in a group have a maximum Hamming distance of



structural grouping (Properties P , Netlist N , Level l, Affinity t)
1: Groups G = ∅ # initially empty
2: for each Property p ∈ P :

# initially groups contains only one property
3: Group g = ∅, g.insert(p), G.insert(g)
4: if l ≥ 1 : # idential COI
5: grouping level 1 (G, N ) # see Fig. 4

6: if l ≥ 2 : # heavy-weight SCCs in COI
7: grouping level 2 (G, N , t) # see Fig. 5

8: if l ≥ 3 : # Hamming distance
9: grouping level 3 (G, N , t) # see Fig. 7

10: return G

Fig. 3. Algorithm to group properties based on structural affinity.

(1− t) ∗ l. Our grouping algorithms guarantee that the quality
of every group will be greater than a specified threshold.

E. Localization Abstraction

The proof or counterexample for a property often only
depends on a small subset of its COI logic. Localization
abstraction [1, 10, 25, 26] is a powerful method aimed at
reducing netlist size by removing irrelevant logic, transforming
irrelevant gates to unconstrained primary input variables via
cutpoint insertion. Since cutpoints can simulate the behavior
of the original gates and more, the localized netlist over-
approximates the behavior of the original netlist. Abstraction
refinement is used to eliminate cutpoints which are deemed
responsible for any spurious counterexamples, effectively re-
introducing previously-eliminated logic. Ultimately, the ab-
stract netlist is passed to a proof engine. It is desirable that the
abstract netlist be as small as possible to enable more-efficient
proofs, while being immune to spurious counterexamples.

III. STRUCTURAL GROUPING OF PROPERTIES

Practical industrial verification tasks often entail hundreds
of thousands of support variables, and tens of thousands
of properties. The need for scalability obviates straight-
forward approaches, such as pairwise-comparing each property
to check for affinity. We use support bitvectors for a set
of properties, and partition them into high-affinity property
groups. Our affinity-based algorithm performs grouping in
three configurable levels based on: identical bitvectors (level-
1), weights of large SCCs in support (level-2), and Hamming
distance between bitvectors (level-3). The underlying intuition
is that properties with similar bitvectors, measured in terms of
a distance metric like Hamming distance, have high structural
affinity and can be most efficiently verified as one concurrent
multi-property verification task. To ensure overall scalability,
each level runs in as close to linear runtime as possible with
respect to the number of properties, otherwise the grouping
effort itself may severely degrade overall verification resource
comprising grouping plus verification of the identified groups.

Fig. 3 shows our leveled structural grouping algorithm. It
takes as input the properties P , netlist N , and desired grouping
level l. Additionally, an affinity threshold t controls the quality
of groups formed. Each property is initially assigned its own

grouping level 1 (Groups G, Netlist N )
1: Hash function hfun, Hash table ht
2: for each Group g ∈ G :
3: Property p = g∗ # center property in group
4: Bitvector bv = support bitvector (p,N )

# hash the bitvector for fast comparison
5: unsigned val = hfun (bv)

# check if another group has identical bitvector
6: if Group h = hash lookup (ht, 〈val, bv〉) :
7: group merge (g, h) # merge properties in g with h
8: else # store in hash table for later comparison
9: hash insert (ht, 〈〈val, bv〉, g〉)

Fig. 4. Algorithm to group properties based on identical COI. Properties for
which bitvectors hash to the same value are grouped together.

distinct group, i.e., each group contains only one property.
Upon termination, properties in a group are checked concur-
rently using a verification algorithm portfolio, and different
groups are verified independently.

A. Level-1 Grouping – Identical COI

The procedure to perform property grouping based on
identical support bitvectors is demonstrated in Fig. 4. The
procedure takes an initial property grouping as input, and
then merges groups that have identical support bitvectors. g∗

denotes the representative property in a group, i.e., g∗ is the
center. The choice of g∗ is trivial at level-1 because every
group contains only one property. Next, the support bitvector
for the center property in the group is hashed to an integer
value. The choice of the hash function is implementation-
dependent. We use Murmur3 [2] to hash bitvectors as being
very fast and accurate with minimal collisions, however, other
functions can also be used. Groups for which the bitvector
hashes to the same integer value, and further which have
identical bitvectors, are then merged. Any property in the
merged group can be chosen as the new center property
without affecting subsequent results.

Theorem 1. Level-1 grouping generates high-affinity property
groups G such that ∀g ∈ G : Q(g) = 1.0.

Proof. Initially, every group contains one property. Properties
with identical bitvectors, i.e., affinity = 1.0, are grouped.

While scalable (near-linear runtime) and able to group
properties with 100% affinity, in practice it is desirable to
perform additional grouping of properties which have a small
tolerable Hamming distance yet are still high-affinity. Again,
we stress that a simple procedure of pairwise comparison
to check whether properties are within a small tolerance is
prohibitively slow in practice, rendering prior techniques as
[7, 8] unusable in practice. The following algorithms solve
this goal of high-affinity group merging, with high scalability
and guaranteed grouping quality.

B. Level-2 Grouping – Heavy-weight SCCs in COI

Many practical netlists contain at least one very large SCC,
comprising the majority of its registers. For such netlists,



grouping level 2 (Groups G, Netlist N , Affinity t)
1: Trie trie # initially empty
2: Weight w # set heuristically

3: for each Group g ∈ G :
4: Property p = g∗ # center property in group
5: Bitvector bv = support bitvector (p,N )

# find SCCs with weight ≥ w in COI of property p
6: Set S = find sccs (p,N,w)
7: unsigned scc weight = cumulative weight(S)

# check if SCCs contain t% of support variables
8: if scc weight/length(bv) < t :
9: continue # SCCs can’t decide affinity for group g

# check if another group has exact same SCCs in support
10: if Group h = trie lookup (trie, S) :

# merge properties in g with h
11: group merge (g, h)
12: else # store in trie for later comparison
13: trie insert (trie, 〈S, g〉)

Fig. 5. Algorithm to group properties based on heavy-weight SCCs in the
COI. Properties that share the same heavy-weight SCCs are grouped together.

all properties that contain the same heavy-weight SCCs in
their COI can often be grouped together as having high
affinity. Fig. 5 demonstrates the procedure to perform property
grouping based on heavy-weight SCCs. The procedure takes
as input an affinity threshold t. For every group g, we find
all SCCs in the COI of the center property p = g∗, with
weight at least w. We use Tarjan’s algorithm to find SCCs
in the COI of property p in linear runtime. Practically, it is
very expensive to find SCCs in the COI of every property
independently. Instead, all SCCs are computed once for netlist
N along with the linear traversal to compute support bitvectors
for properties [23]. If the cumulative SCC weight is at least
t times the number of support variables in netlist N , this set
of SCCs is inserted into a prefix tree or trie (for fast ∼linear
time lookup and prefix matching). A hash table may be used, at
the expense of possibly-increased memory footprint. If the trie
already contains this set of SCCs, albeit for another group h,
the two groups are merged. Any property in the merged group
can be chosen as the new center property without affecting
subsequent results.

Theorem 2. Given affinity t, level-2 grouping generates prop-
erty groups G such that ∀g ∈ G : Q(g) ≥ t.

Proof. (Sketch) Let n be the number of support variables.
Properties with identical heavy-weight SCCs in their COI that
contain t% of the variables have the same t ∗n bits set to “1”
in their unpacked bitvectors, implying a maximum Hamming
distance of (1− t) ∗ n or minimum affinity of t.

Properties sharing a small number of common large SCCs
may thus be adequately high-affinity to group based solely
upon analysis of these SCCs, without needing to consider a
potentially very large number of non-SCC support variables
or smaller SCCs. In contrast, storing every full bitvector in
a trie may become computationally expensive and serve little
benefit. Since the subsequent level-3 grouping does take non-

bitvector cluster (Bitvectors BV , Affinity t, Word-size n)
# initialization step

1: Map m, unsigned k
2: m = generate map (t, n) # see below

# clustering step
3: Hash function hfun, Hash table ht
4: Clusters C = ∅ # initially empty

5: for each Bitvector bv in BV :
6: unsigned num = ceil(length(bv)/n) # number of words
7: unsigned mbv[num] # mapped bitvector

8: for i in 0, . . . , num− 1 : # generate mapped bitvector
9: mbv[i] = m[bv[i]]

# hash and insert into table. If 〈val〉 already exists as a
key in ht, add new 〈bv〉 value to this key

10: unsigned val = hfun(mbv), hash insert multi(ht, 〈val, bv〉)
11: for each entry 〈〈val〉, bv[]〉 in ht :
12: Cluster c = bv[], C.append(c) # bitvectors with key 〈val〉
13: return C

generate map (Affinity t, Word-size n)
1: Set S = {0, 1, . . . , 2n − 1} # all n-bit numbers
2: unsigned k # number of clusters for items in S
3: Map m # m stores map of n-bit number → 1, . . . , k

# generate clusters s.t. each has quality t̂ = 1−b(1− t)∗ne÷n
4: m = cluster (S, t) # increase k to match t̂

5: return m

Fig. 6. Algorithm to cluster bitvectors based on Hamming distance. The
initialization step may be computed offline and reused across runs.

SCC support variables into account, minimum SCC weight w
is typically set to at least 1% of the total number of support
variables in the netlist, and possibly substantially larger like
10%, for fastest runtime without impacting grouping results.

C. Level-3 Grouping – Hamming distance

Classical clustering techniques, like k-medoids [28] (O(n2)
time complexity) and heirarchical clustering based on a dis-
tance metric like Hamming distance [29] (O(n2logn) time
complexity), are slow and do not scale well with the number
of clustered items [3]. They require expensive computation of a
distance matrix that maintains the distance between every pair
of items (guaranteed to require at least quadratic resources),
and the number of clusters to generate as an input parameter.
In a verification context, it is prohibitively slow to perform a
quadratic number of bitvector comparisons [7, 8] on netlists
with millions of support variables. Plus, it is impossible to
a-priori know how many high-affinity groups are a natural fit
for the given multi-property netlist, until the affinity analysis
and grouping are completed. Classical clustering algorithms
are thus unsuitable for our goal.

A third component of our grouping procedure is an ap-
proximate clustering algorithm to scalably cluster bitvectors
based on Hamming distance. Fig. 6 demonstrates the clustering
algorithm. The algorithm takes as input a set of unpacked
bitvectors BV , word size n, and an affinity threshold t.
As an initialization step, the algorithm first uses an off-
the-shelf clustering algorithm [19, 29] to cluster all n-bit
numbers into k clusters such that quality of every cluster



is at least t̂ = 1 − b(1 − t)∗ne ÷ n (bxe is the nearest
integer function); a map m is maintained that maps every
n-bit number (0, 1, . . . , 2n − 1) to the allotted cluster center
(1, . . . , k). For a fixed value of n, the number of clusters k can
be increased one-by-one until quality of each is at least t̂, i.e.
the maximum Hamming distance allowed per n-bit segment
in a cluster is (1 − t̂) ∗ n. E.g. for n = 32 and t = 0.95, the
maximum hamming distance is (1− 0.95) ∗ 32 = 1.6 ≈ 2 for
which t̂ = 0.9375. It is important to note that the initialization
step involving clustering does not hinder scalability because:

1) The value of n is typically less than the maximum CPU
word size that allows fast single-cycle Hamming distance
computation between two numbers (xor); clustering with
t = 0.9 for n=16 and 32 takes <1s and <1min, resp.

2) The map can be computed once offline, and reused in
all future runs of the algorithm (e.g. embedded into a
verification tool) for various ranges of threshold t.

3) For online computation, an approximate linear-time al-
gorithm, like Gonzalez [19], can be used on S that may
only contain n-bit numbers appearing in bitvectors BV .

In the clustering step, every unpacked bitvector bv is read in
n-bit segments to generate a piecewise-mapped bitvector mbv
using map m. Bitvectors for which the corresponding mapped
bitvectors hash to the same value are put in the same cluster.

Theorem 3. Given unpacked bitvectors BV , affinity t, and
word size n, bitvector cluster returns clusters C such that ∀c ∈
C : Q(c) ≥ t̂, where t̂ = 1− b(1− t)∗ne ÷ n.

Proof. (Sketch) Assume generate map() creates clusters from
n-bit numbers in S such that minimum affinity between
numbers in each cluster is t̂, implying a Hamming distance of
(1− t̂)∗n. Let each unpacked bitvector bv ∈ BV contain num
n-bit segments, i.e., length(bv) = n ∗ num. If two mapped
bitvectors hash to the same value, then every ith n-bit segment
in the two original unpacked bitvectors is at a maximum
distance of (1 − t̂) ∗ n. Therefore, the maximum distance
between the two unpacked bitvectors is (1 − t̂) ∗ n ∗ num
or (1− t̂) ∗ length(bv), implying a minimum affinity of t̂.

Fig. 7 demonstrates the procedure to perform property
grouping based on Hamming distance using the bitvector
clustering algorithm of Fig. 6. The algorithm generates a
map m of n-bit numbers to cluster centers 1, . . . , k as an
initialization step. The center property unpacked bitvector for
every group is read per n-bit segment, to generate a mapped
bitvector using map m. The mapped bitvector is hashed to
an integer value. The groups for which the center property
mapped bitvectors hash to the same value, and further which
have identical mapped bitvectors, are immediately merged.

Theorem 4. Given affinity t and word size n, level-3 grouping
generates property groups G such that ∀g ∈ G : Q(g) ≥
2 ∗ t+ t̂− 2, where t̂ = 1− b(1− t)∗ne ÷ n.

Proof. (Sketch) The proof follows from triangle inequality
of Hamming distance. Let m be the length of unpacked
bitvectors. For groups g1 and g2, if center property bitvectors

grouping level 3 (Groups G, Netlist N , Affinity t, Word-size n)
# initialization step (can be computed online/offline)

1: Map m, unsigned k
2: m = generate map (t, n) # see Fig. 6

# clustering step
3: Hash function hfun, Hash table ht

4: for each Group g ∈ G :
5: Property p = g∗ # center property in group
6: Bitvector bv = support bitvector (p,N )
7: unsigned num = dlength(bv)/ne # number of words
8: unsigned mbv[num] # mapped bitvector

9: for i in 0, . . . , num− 1 : # generate mapped bitvector
10: mbv[i] = m[bv[i]]

# hash the mapped bitvector for fast comparison
11: unsigned val = hfun (mbv)

# check if another group has identical mapped bitvector
12: if Group h = hash lookup (ht, 〈val,mbv〉) :
13: group merge (g, h) # merge properties in g with h
14: else # store in hash table for later comparison
15: hash insert (ht, 〈〈val,mbv〉, g〉)

Fig. 7. Algorithm to group properties based on Hamming distance. Properties
for which mapped bitvectors hash to the same value are grouped together.

hash to the same value then the bitvectors are at a distance of at
most (1− t̂)∗m (Theorem 3). Properties within groups g1 and
g2 are at a maximum distance of (1−t)∗m (Theorems 1 & 2)
from their respective center properties. Therefore, maximum
distance between a property in g1 and another property in g2
is 2 ∗ (1− t) ∗m+ (1− t̂) ∗m, or (1− (2 ∗ t+ t̂− 2)) ∗m,
implying a minimum affinity of 2 ∗ t+ t̂− 2.

When t̂ = t, level-3 returns groups with Q(g) ≥ 3 ∗ t− 2.
Despite its provable threshold, there is some asymmetry in
this approach, in that two fairly-high-affinity bitvectors which
differ too much in a single segment will not be merged,
whereas if the difference was small per-segment with multiple
segments differentiated, they may be merged, albeit respecting
the quality bound. The highly scalable analysis can be repeated
if higher precision and symmetry is desired. This can be done
either as-is on the entire netlist under different permutations or
segment-partitioning of bitvector indices (i.e., by varying the
starting index of the first n-bit segment in the bitvector), or on
individual (sets of) groups obtained from the prior run. Since
re-running on a subset of properties implies a smaller cone-
of-influence, bitvectors can be compacted for faster runtime to
only include support variables in the COI of any considered
property, and this indexing will differ from the prior run over
a larger set of properties. Moreover, support variables present
in the COI of every property can be completely projected out
of the bitvectors to offer further compaction and speedup.

IV. SEMANTIC REFINEMENT OF PROPERTY GROUPS

It is desirable that the netlist generated by localization
abstraction be as small as possible to enable efficient proofs.
Localization cutpoints are property-specific, hence concurrent
localization of properties with disjoint COIs - or even similar
COIs - may yield significantly larger netlists which are less



localization (Group g, Netlist N , Limit n, Threshold t)
1: Netlist L # localized netlist
2: L = initial abstraction(g) # add gates for every property
3: unsigned k = 0 # bmc depth
4: bool stop = 0 # some properties fail at depth k
5: while not stop : # loop until all properties pass at depth k
6: stop = 1
7: Gates c = {} # cutpoints to refine in L, initially empty
8: for each Property p ∈ g :
9: Result r = run bmc(L, p, k) # run bmc with depth k

10: if r == unsat : continue # property passes

# check counterexample returned by bmc
11: if cex not spurious : report solved(p, cex), continue
12: stop = 0 # property fails
13: Gates d = cutpoints to refine(), c = c ∪ d
14: collect support info(p, d) # add to support bitvector

# at least one property passes at depth k
15: if not stop : refine abstraction(L, c), unchanged = 0
16: else unchanged + = 1 # no change in abstraction

# check if netlist unchanged for last n bmc steps
17: if unchanged < n : k = k + 1, goto line 4 # increment depth
18: else Groups Ĝ = structural grouping(g, L, 3, t)

# run proof engine for each group in Ĝ with netlist L
. . .

Fig. 8. Localization to partition a group g of high-affinity properties. BMC
is run for increasing depth until there is no change in the localized netlist,
after which partitioning is attempted to split g into subgroups Ĝ.

scalable to verify. Our structural property grouping procedure
ensures that only high-affinity properties in a group will
be localized concurrently, which helps ensure smaller multi-
property abstractions. However, it might be the case that a
cutpoint is refined for one property in a high-affinity group,
whereas that refinement may be unnecessary for another
property in the group. As a result, properties in a high-
affinity group without localization cutpoints may have vastly
different COI in the localized netlist. Therefore, partitioning
the group obtained from Fig. 3 into high-affinity localized
subgroups based upon localization decisions can improve
overall verification scalability.

A. Generating Support Bitvectors

Various techniques have been proposed [1, 10, 25] to
guide the abstraction-refinement process of localization. Most
state-of-the-art localization implementations use SAT-based
bounded model checking (BMC) [4] to select the localized
netlist upon which an unbounded proof is attempted. In our
implementation we run BMC iteratively until there is no
change in the localized netlist. Fig. 8 shows our localiza-
tion abstraction framework that supports high-affinity group
partitioning. We start with a localized netlist only containing
property gates. For a given BMC depth k, we iterate over
properties in group g to eliminate all spurious counterexamples
of length k. Cutpoints deemed necessary to refine for a
property p are collected (line 13). If a cutpoint is also a support
variable, it is then added to the support bitvector maintained
for property p (line 14). The abstraction is then refined using
the collected cutpoints, and BMC is run again at depth k.

When all properties hold for the abstract model at depth k,
BMC is run again with depth k + 1. The repeated BMC runs
add new cutpoints to the support bitvector for every property,
which in turn can be used to partition group g into high-
affinity subgroups with respect to the localized netlist. Various
strategies may be used to decide when to terminate BMC: an
upper-bound on BMC depth or runtime can be used. In our
framework, we prefer increasing BMC depth until there is no
change in the localized netlist for n consecutive steps (lines
17–18). The value of n can be varied to increase confidence
in the abstracted model such that it is immune to spurious
counterexamples.

B. Group Partitioning

Once BMC converges, group g is then partitioned into
subgroups Ĝ based on support bitvector information. Note
that the problem is analogous to grouping of properties in
g with respect to the localized netlist. Therefore, we use the
property grouping procedure of Fig. 3 to generate high-affinity
property groups for overall scalability. 1 The properties in each
subgroup are then passed to a proof engine for verification with
respect to each COI-reduced localized subgroup’s netlist.

V. EXPERIMENTAL RESULTS

We experimentally analyze the impact of our grouping
procedure on end-to-end verification scalability.2 Our grouping
procedure is implemented within Rulebase: Sixthsense Edition
[27]. All experiments were run on Linux machines, with 32GB
memory. Time reported is ‘cpu’ time. We refer to different
grouping levels as L1, L2, and L3.

A. Benchmarks from HWMCC

We evaluate 48 benchmarks from HWMCC that contain
more than 100 safety properties (Fig. 9a). These are obtained
by simplifying all the benchmarks by standard logic synthesis
(similar to &dc2 in ABC [6]) to solve easy properties, and
disjunctive decomposition to fragment each OR-gate property
into a sub-property of its literals. Each property, or property
group, is solved using a portfolio comprising BMC [4], IC3
[5, 15], and localization (LOC) without semantic partitioning.
Each can process multiple properties: IC3 and BMC in a time-
sharing manner, and LOC concurrently abstracting a set of
properties which are solved using IC3.

a) Property Grouping: Support bitvector computation is
fast, and takes less than five seconds on the largest benchmark.
The ideal threshold is benchmark- and solver-specific. Given
the exponential penalty of grouping lower-affinity properties
vs. linear penalty of splitting higher-affinity properties (offset
by parallel solving), we find it best to err to the latter using
a higher affinity t=0.9. L3 is done using 16-bit words and

1Off-the-shelf clustering is more applicable here than on the original netlist
if desired, because: (1) the localized netlist and support bitvectors are often
immensely smaller than the original netlist; (2) the number of properties per
structural group being localized is often smaller than the number of overall
netlist properties. However, there is no guarantee of either of these points.

2Detailed results available at http://temporallogic.org/research/FMCAD19
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Fig. 9. Grouping on 48 HWMCC benchmarks with more than 100 properties,
and maximum 50 properties/group. Level-1 grouping quality is 1.0.
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Fig. 10. End-to-end verification with grouping vs. portfolio which (a) checks
properties one-at-a-time, and (b) check all properties together. Points below
diagonal are in favor of verification with grouped properties.

t̂ = 0.875, i.e., maximum distance of 2 between words
(Fig. 6). Initially each property is assigned to its own distinct
group. The grouping takes less than 10ms for all benchmarks
(Fig. 9b). The group count reduction ratio for each level with
respect to the preceding level, and overall reduction ratio,
i.e., number of groups relative to preceding level, is shown
in Fig. 9c. L2 merges properties for 13 benchmarks: <0.5
ratio for 8 benchmarks, and is critical to the performance of
L3. Without L1 and L2, not all properties merged by L2 are
merged by L3 due to inherent asymmetry, and L3 can merge
the same properties as L1, albeit, with small runtime penalty.
Therefore, the leveling order is crucial and gives tighter control
on group affinity. Fig. 9d shows the minimum quality of all
non-singleton groups in a benchmark.

b) End-to-end Verification: We compare the runtime of
checking each property one-by-one vs. checking property
groups in Fig. 10a; verification with structural grouping is
up to 400× (median 4.3×) faster. A fairer comparison of
the runtime of checking all properties together vs. checking
property groups is shown in Fig. 10b; grouped verification is
up to 72× (median 3.5×) faster. Table I shows benchmarks for

TABLE I
VERIFICATION WITH ONE-BY-ONE, MULTIPLE, AND GROUPED PROPERTIES

Name #Prop One-by-one Multiple #G Grouped

6s281 105 0.32h 0.22h 84 0.26h
bobsmvhd3 138 4.36h 0.43h 53 0.92h
6s380 149 1.92h 12.54s 12 16.95s
bob12s08 206 13.04h 3.45h 88 6.80h
6s381 1506 18.60h 1.45h 192 4.76h
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Fig. 11. Verification performance of (a) high and (b) low affinity grouping
on LOC with respect to checking all properties one-by-one.

which checking all properties together is faster. LOC solves
very few properties for these benchmarks, whereas, BMC/IC3
quickly verify all properties together: 145 properties in 6s380
are falsified by BMC in a few unrollings and remaining proved
by LOC, while all properties are proved by LOC or IC3 for
other benchmarks. The benchmarks in Table I have properties
where a large majority are either all falsified, or proved.
The advantage of checking high-affinity groups is outweighed
by the added cost of repeating BMC/IC3 across groups for
these benchmarks, which could be adjusted for using a lower
affinity threshold. However, grouping advantage is apparent for
benchmarks in which no single algorithm solves all properties,
and properties have different verification outcomes.

c) Localization Abstraction: We select 24 benchmarks
having at least 50 properties solved by LOC. Properties not
solved by LOC are not considered. Fig. 11 shows the impact
of high and low affinity grouping on the performance of LOC.
If high-affinity structural grouping returns N groups, low-
affinity grouping is done by sorting properties by COI size, and
partitioning into equally-sized N groups. Fig. 11a compares
verification of high-affinity grouped properties and one-by-
one checking of each property with LOC; verification is up
to 30× (median 2.9×) faster. On the other hand, low-affinity
groups often degrade LOC performance compared to one-by-
one checking. Fig. 11b compares high and low affinity group
verification with LOC. Five benchmarks have comparable
performance due to grouping of large number of properties
into very few groups. Nevertheless, high-affinity verification
is always faster: up to 3.7× (median 2.5×).

d) Semantic Partitioning: LOC generates a localized
netlist using BMC for every property group which is then
checked by a proof engine. If the localization is sufficient,



TABLE II
VERIFICATION WITH SEMANTIC PARTITIONING DISABLED/ENABLED

Name
Total Single Run Verification Time

#G #P #G #P Disabled Enabled Speedup

6s384 2 51 1 27 22.65s 36.76s 0.61×
6s344 12 247 3 65 2.04h 0.65h 3.13×
6s405 13 593 3 134 0.28h 0.21h 1.34×
6s410 15 735 4 121 0.18h 0.12h 1.50×
6s110 15 186 5 73 82.13s 81.43s 1.00×
6s391 30 144 9 32 25.61s 43.12s 0.60×
6s332 77 163 16 45 1.21h 0.75h 1.62×

TABLE III
COMPARISON WITH HIERARCHICAL CLUSTERING

Name #P
Our Procedure Hierarchical

#Loss
#G G.Time V.Time #G G.Time V.Time

6s405 593 13 2.16ms 1.04h 13 12.43s 1.04h 0
6s381 1506 192 5.93ms 4.76h 76 36.62s 3.01h 96
6s361 2653 84 12.71ms 355.76s 62 107.14s 293.14s 11
6s117* 8063 173 25.53ms 8.13h 165 1.07h 7.45h 4
6s114* 30628 1612 0.42s 0.76h 873 2.65h 0.52h 412

* Not simplified by logic synthesis

the proof engine may prove all properties in a single run.
Otherwise, it generates a possibly-spurious counterexample.
Table II shows benchmarks in which some non-singleton
groups are proved by LOC in a single proof-engine run. We
perform semantic partitioning on these groups. ‘Total’ shows
the #Groups generated by structural grouping for #Props,
whereas, ‘Single Run’ shows the #Groups and #Props solved
by one proof engine run after generating a sufficient localized
netlist. All groups are solved by LOC one-by-one. As is
evident, semantic partitioning boosts the performance of LOC
for hard problems (in bold). However, there is a marginal
slowdown for easy problems due to the overhead of restarting
the proof engine on semantically partitioned subgroups.

e) Lossy Grouping: Lastly, we compare the grouping loss
using our procedure with hierarchical clustering (HC) [29]. We
measure loss as #properties assigned a group by HC but not
our procedure (maximum 50 properties/group). Table III sum-
marizes results for five representative benchmarks. HC always
takes more grouping time. There is no loss in benchmarks
for which both methods return very few groups (e.g., 6s405).
Verification with fewer groups from HC is faster (e.g., 6s381)
when our procedure has higher loss. This loss may be due
to 1) properties having an almost identical set of SCCs but
differing in a few small SCCs: these are not grouped due to
trie prefix mismatch, and 2) asymmetry in L3, which can be
mitigated by using techniques in Sec. III-C. In most cases, HC
gives fewer groups which may result in less verification time,
but HC grouping resource results in an end-to-end runtime
degradation vs. our approach. It is clear that HC gives tighter
groups but overall verification resource is dominated by the
time it takes to perform grouping.
B. Proprietary Designs

Post-silicon observability solutions often leverage monitor-
ing logic instrumented throughout a hardware design. This
debug bus logic monitors a configurable set of internal signals

TABLE IV
VERIFICATION OF PROPRIETARY DEBUG BUS DESIGNS

ID #P #G G.Time
(ms)

Verification Time

One-by-one Grouped Speedup

1 36 9 0.48 32.69s 19.27s 1.70×
2 45 3 0.49 26.24s 12.63s 2.08×
3 56 5 0.94 11.9s 6.34s 1.88×
4 76 36 3.87 0.21h 0.14h 1.40×
5 148 4 0.68 95.83s 22.68s 4.23×
6 224 6 0.74 65.52s 19.65s 3.34×
7 1506 53 9.16 0.93h 0.21h 4.32×
8 9371 1027 137.72 52.65h 11.89h 4.43×
9 11035 1238 146.32 7.94h 2.81h 2.82×

in real-time, non-intrusively while the chip is functionally
running. Debug bus verification entails a large number of prop-
erties (often one per monitor point), within very large design
components - sometimes entire chips [17]. Localization is the
dominant method to verify debug bus designs as they often
contain >10M gates [17]. Note that concurrent verification of
all properties is completely intractable. Table IV summarizes
our results. ‘One-by-one’ shows verification time by local-
izing one property at a time, whereas, ‘Grouped’ represents
concurrent localization of properties in a high-affinity group.
All designs benefit from high-affinity group verification, and
the speedup is clearly evident for large designs (in bold).

VI. CONCLUSIONS AND FUTURE WORK

Scalable property grouping is a hard problem. Existing
approaches are either syntax-based [11], or resource intensive
[7]. The need for scalability cannot be over-stated; traditional
grouping algorithms require at least quadratic runtime vs.
number of properties, and are prohibitively slow–adding to and
easily outweighing the benefit they bring to the verification
process. We present a 2-step grouping strategy: strucural
grouping followed by semantic partitioning, that offers mas-
sive end-to-end verification speedup. Experiments demonstrate
the usefulness of our method on several verification tasks:
structural grouping is trivially fast regardless of subsequent
verification engines, and semantic partitioning accelerates dif-
ficult localization problems. We advance state-of-the-art in
localization by providing an optimal multi-property solution.

Future work includes improved ordering and compaction of
support bitvector bits to improve performance, e.g., support
variables present in every property can be projected out of the
bitvectors. Dynamic trie matching that discounts differences
in very small SCCs in COI for properties, may improve level-
2 grouping. Extending level-3 grouping to work with packed
bitvectors may speed up grouping: large SCCs for which any
distinction exceeds threshold require identical valuations in
grouping, and smaller SCCs are either unpacked to multiple
bits or treated with finer-grained map. Clever data structures,
such as MA FSA [12], and branch-and-bound traversal [30]
can search for fairly-high-affinity bitvectors that differ in only
a few n-bit segments, thereby reducing level-3 asymmetry.
Extending semantic partitioning to cases where refinement
occurs during a proof engine run is a promising research
direction. We plan to investigate how semantic information
from BMC and IC3 can be used to perform property grouping.
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