Boosting Verification Scalability via Structural Grouping and Semantic Partitioning of Properties

Rohit Dureja^{*}, Jason Baumgartner[†], Alexander Ivrii[†], Robert Kanzelman[†], Kristin Y. Rozier^{*}

* Iowa State University + IBM Corporation

October 23, 2019

MotivationCone-of-InfluenceStructuralSemanticSummaryModel Checking

Usually multiple properties to be verified

MotivationCone-of-InfluenceStructuralSemanticSummaryModel Checking

Make multi-property verification scalable

MotivationCone-of-InfluenceStructuralSemanticSummaryMulti-Property Verification

- Properties checked concurrently, or one-at-a-time
 - Doesn't optimally exploit sub-problem sharing

Opportunity to save verification resources!

Cone-of-Influence

Structura

Semanti

Summary

Improved Multi-Property Verification

- Group 'high-affinity' properties; similarity metric
 - Properties in a group are concurrently solved; parallel groups
 - Engine effort reused across properties in a group

What similarity metric to use?

Structural

6

Similarity Measure

- Every property has distinct minimal cone-of-influence (COI)
- Multiple properties \rightarrow exponential complexity w.r.t to collective COI
 - Concurrent verification slower that one-at-a-time
- Nearly identical COI \rightarrow save verification resource^{*}
 - Experimental demonstrated, offline-grouping

* G. Cabodi, P. E. Camurati, C. Loiacono, M. Palena, P. Pasini, D. Patti, and S. Quer, "To split or to group: from divide-and-conquer to sub- task sharing for verifying multiple properties in model checking," *International Journal on Software Tools for Technology Transfer (STTT)*, vol. 20, no. 3, pp. 313–325, Jun 2018

MotivationCone-of-InfluenceStructuralSemanticSummaryOur Contributions

- Online procedure to partition properties into high-affinity groups
 - Near-linear runtime and automated; provable affinity bounds

Initial Grouping

(P_0) (P_1) (P_2) (P_3) (P_4) (P_5) (P_6) (P_7) (P_8) (P_9)

Cone-of-Influence

Structural

Semantio

Summary

Our Contributions

- Online procedure to partition properties into high-affinity groups
 - Near-linear runtime and automated; provable affinity bounds
- Property grouping based on cone-of-influence
 - Structural information (static)
- Structurally-similar properties may have different semantics
 - Subset of design logic in cone-of-influence

Our Contributions

- Online procedure to partition properties into high-affinity groups
 - Near-linear runtime and automated; provable affinity bounds
- Property grouping based on cone-of-influence
 - Structural information (static)
- Structurally-similar properties may have different semantics
 - Subset of design logic in cone-of-influence
- Property-group refinement using localization abstraction
 - Semantic information (dynamic)

Cone-of-Influence

Structural

Semanti

Summary

Cone-of-Influence Computation

Cone-of-Influence

Structural

Semanti

Summary

Cone-of-Influence Computation

Cone-of-Influence

Structural

Semanti

Summary

Cone-of-Influence Computation

Cone-of-Influence

Structural

Semanti

Summary

Cone-of-Influence Computation

Cone-of-Influence

Structural

Semanti

Summary

Cone-of-Influence Computation

Iterative

- Repeated traversals
- Does not scale!

Cone-of-Influence

Structural

Semantio

Summary

Cone-of-Influence Computation

Iterative

- Repeated traversals
- Does not scale!

Cone-of-Influence

Structural

Semantio

Summary

Cone-of-Influence Computation

Iterative

- Repeated traversals
- Does not scale!

Cone-of-Influence

Structural

Semantio

Summary

Cone-of-Influence Computation

Iterative

- Repeated traversals
- Does not scale!

Cone-of-Influence

Structural

Semanti

Summary

Cone-of-Influence Computation

Our Method

- Repeated traversals
- Does not scale!

- One traversal
- Very scalable

Motivation Cone-of-Influence Structural Semantic Summary

COI Computation via Support Vectors

- *Support variable* registers and inputs in COI
- Represent every support variable as a bit
 - Bitvector operations to compute support (linear)

G. Cabodi, P. Camurati, and S. Quer, "A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple properties," *Software: Practice and Experience*, vol. 46, no. 4, pp. 493–511, 2016.

19

Motivation Cone-of-Influence Structural Semantic Summary

COI Computation via Support Vectors

- *Support variable* registers and inputs in COI
- Represent every support variable as a bit
 - Bitvector operations to compute support (linear)

G. Cabodi, P. Camurati, and S. Quer, "A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple properties," *Software: Practice and Experience*, vol. 46, no. 4, pp. 493–511, 2016.

20

COI Computation via Support Vectors

- *Support variable* registers and inputs in COI
- Represent every support variable as a bit
 - Bitvector operations to compute support (linear)
 - Constant-time inspection

G. Cabodi, P. Camurati, and S. Quer, "A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple properties," *Software: Practice and Experience*, vol. 46, no. 4, pp. 493–511, 2016.

Cone-of-Influence

Structural

Summary

Support Vector Computation

- Several optimizations to improve time/memory
 - Directed acyclic graph SCCs \rightarrow shorter bitvectors
 - Garbage collection \rightarrow peak memory requirement

Several orders of magnitude faster!

G. Cabodi, P. Camurati, and S. Quer, "A graph-labeling approach for efficient cone-of-influence computation in model-checking problems with multiple properties," *Software: Practice and Experience*, vol. 46, no. 4, pp. 493–511, 2016.

MotivationCone-of-InfluenceStructuralSemanticSummaryStructuralGrouping

- Properties with 'similar' support bitvectors above threshold *t*
 - Classical clustering very slow, at least O(n²)
- Three-level approximate clustering (near-linear runtime)

Initial Grouping

 (P_0) (P_1) (P_2) (P_3) (P_4) (P_5) (P_6) (P_7) (P_8) (P_9)

MotivationCone-of-InfluenceStructuralSemanticSummaryStructural Grouping

- Properties with 'similar' support bitvectors above threshold *t*
 - Classical clustering very slow, at least O(n²)
- Three-level approximate clustering (near-linear runtime)

MotivationCone-of-InfluenceStructuralSemanticSummaryStructuralGrouping

- Properties with 'similar' support bitvectors above threshold *t*
 - Classical clustering very slow, at least O(n²)
- Three-level approximate clustering (near-linear runtime)

Cone-of-Influence

Structural

Semanti

Summary

Level 2 – SCC Sharing

- Several designs contain large SCCs in cone-of-influence
- Every SCC has a weight number of registers in SCC
- Group properties that share large SCCs at least weight *t*

"N" SCC bits

MotivationCone-of-InfluenceStructuralSemanticSummaryStructural Grouping

- Properties with 'similar' support bitvectors above threshold *t*
 - Classical clustering very slow, at least O(n²)
- Three-level approximate clustering (near-linear runtime)

MotivationCone-of-InfluenceStructuralSemanticSummaryStructural Grouping

- Properties with 'similar' support bitvectors above threshold *t*
 - Classical clustering very slow, at least O(n²)
- Three-level approximate clustering (near-linear runtime)

MotivationCone-of-InfluenceStructuralSemanticSummaryLevel 3 - Hamming Distance

- Exact Hamming distance calculation is slow, O(n²)
- Generate *normalized* support bitvectors
 - Map generated offline or on-the-fly, < 1sec
- Group properties with identical mapped bitvectors

MotivationCone-of-InfluenceStructuralSemanticSummaryStructural Grouping

- Properties with 'similar' support bitvectors above threshold *t*
 - Classical clustering very slow, at least O(n²)
- Three-level approximate clustering (near-linear runtime)
- Proof: affinity $\geq 3^{*}t 2$
- Properties in a group are checked concurrently; groups in parallel

MotivationCone-of-InfluenceStructuralSemanticSummaryGrouping Time

- Largest benchmarks (HWMCC)
 - Simplified by logic synthesis; hard properties only
 - 100 2,500 properties in a benchmark

MotivationCone-of-InfluenceStructuralSemanticSummaryGrouping Time

Grouping takes <10 ms

MotivationCone-of-InfluenceStructuralSemanticSummaryEnd-to-EndSpeedup

- Engine portfolio BMC, IC3, and Localization (LOC)
 - BMC and IC3 can process multiple properties
 - Localization concurrently

MotivationCone-of-InfluenceStructuralSemanticSummaryEnd-to-EndSpeedup

Median 4.3x speedup

MotivationCone-of-InfluenceStructuralSemanticSummaryImpact on Localization Abstraction

- Technique to remove irrelevant logic
 - Iterative method, repeated *cutpointing* and *refinement*
- Concurrent localization of low-affinity properties
 - Large localized designs, disjoint logic subsets, slow proofs
- Our procedure ensures high-affinity property localization
 - Small localized designs, faster proofs

MotivationCone-of-InfluenceStructuralSemanticSummaryImpact on Localization Abstraction

- Compare with low-affinity groups sort then partition
- First efficient multi-property localization solution!

Median 2.5x speedup

MotivationCone-of-InfluenceStructuralSemanticSummaryStructural Grouping

- Structurally-similar properties may have different semantics
 - Subset of design logic in cone-of-influence

MotivationCone-of-InfluenceStructuralSemanticSurStructuralGrouping

- Structurally-similar properties may have different semantics
 - Subset of design logic in cone-of-influence, mix of hittable/unhittable
- Learn semantic information via localization abstraction

MotivationCone-of-InfluenceStructuralSemanticSummarySemantic Partitioning

• Concurrently localize high-affinity property group

Motivation Cone-of-Influence Structural Semantic Summary

- Semantic Partitioning
 - Concurrently localize high-affinity property group
 - Repeated BMC steps to generate localized design

Motivation Cone-of-Influence Structural Semantic Summary

- Semantic Partitioning
 - Concurrently localize high-affinity property group
 - Repeated BMC steps to generate localized design

Motivation Cone-of-Influence Structural Semantic Summar

- Semantic Partitioning
 - Concurrently localize high-affinity property group
 - Repeated BMC steps to generate localized design

MotivationCone-of-InfluenceStructuralSemanticSummarySemantic Partitioning

- Concurrently localize high-affinity property group
- Repeated BMC steps to generate localized design
- Attempt partitioning after N consecutive steps with no refinement

MotivationCone-of-InfluenceStructuralSemanticSummarySemantic Partitioning

- Concurrently localize high-affinity property group
- Repeated BMC steps to generate localized design
- Attempt partitioning after N consecutive steps with no refinement
- Structural grouping procedure w.r.t localized design

MotivationCone-of-InfluenceStructuralSemanticSummaryImpact on Localization Abstraction

- Selected benchmarks; some property groups solved by localization
 - Single proof run; no spurious counterexamples

- Three leveled grouping; identical, SCC sharing, and Hamming distance
- 4.3x speedup, minimal resource overhead
- Yields groups with provable affinity bounds; might err (tradeoff)
- First approach to **optimize multi-property localization**
- Ongoing and future work
 - Sequential equivalence checking (SEC) each equivalence point is a property
 - Structural vs. semantic hard to know without consuming verification resource

Thank you!

http://temporallogic.org/research/FMCAD19/